Premium project

Partnering to Protect You from Peril

Examine the network of connections among local health departments in the United States.

Start Project
10 Tasks1,500 XP

Loved by learners at thousands of companies


Project Description

Have you ever wondered who keeps an eye on your favorite restaurants to make sure your food is safe? Or removes old tires from vacant lots before they fill with standing water that could attract mosquitos that spread disease? These tasks are among the services provided by local health departments in the United States. These health departments partner with other health departments to share information and coordinate services, which is especially crucial during public health emergencies. In this project, you will explore the 2016 national network of local health departments and use centrality measures and visualization to identify key health departments nationally, regionally, and locally. Which health departments are most connected? Where are there gaps? What are the characteristics of central health departments? The project uses `igraph` and `tidyverse` commands (from `readr` and `dplyr`) to import and examine a network made up of an edgelist and an attribute file. The data in this project was taken from a survey by the National Association of County and City Health Officials (NACCHO), which you can read about here.

Project Tasks

  1. 1
    Ebola, hurricanes, and forest fires, oh my
  2. 2
    Cleaning up the network object
  3. 3
    Getting to know the network
  4. 4
    Connections facilitating coordination nationwide
  5. 5
    Connections for regional coordination
  6. 6
    Which health departments are central in Texas and Louisiana?
  7. 7
    Visualizing the central health departments
  8. 8
    What about state-level networks during emergencies?
  9. 9
    Are central health departments urban?
  10. 10
    Which health departments have high betweenness?
Technologies
R R
Topics
Data ManipulationData VisualizationProbability & StatisticsImporting & Cleaning Data
Jenine Harris Headshot

Jenine Harris

Associate Professor at Washington University in St. Louis
Jenine teaches biostatistics in the public health program at Washington University in St. Louis and is the author of the Sage book on statistical models for social networks, "An Introduction to Exponential Random Graph Modeling." She is an enthusiastic R user who co-leads the R-Ladies chapter in St. Louis and has an interest in reproducible research practices.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA