Pular para o conteúdo principal
InícioRBeginning Bayes in R

Beginning Bayes in R

This course provides a basic introduction to Bayesian statistics in R.

Comece O Curso Gratuitamente
4 horas17 vídeos56 exercícios9.292 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

There are two schools of thought in the world of statistics, the frequentist perspective and the Bayesian perspective. At the core of the Bayesian perspective is the idea of representing your beliefs about something using the language of probability, collecting some data, then updating your beliefs based on the evidence contained in the data. This provides a convenient way of implementing the scientific method for learning about the world we live in. Bayesian statistics is increasingly popular due to recent improvements in computation, the ability to fit a wide range of models, and to produce intuitive interpretations of the results.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.
  1. 1

    Introduction to Bayesian thinking

    Gratuito

    This chapter introduces the idea of discrete probability models and Bayesian learning. You'll express your opinion about plausible models by defining a prior probability distribution, you'll observe new information, and then, you'll update your opinion about the models by applying Bayes' theorem.

    Reproduzir Capítulo Agora
    Discrete probability distributions
    50 xp
    Most likely spin?
    50 xp
    Chance of spinning an even number?
    50 xp
    Constructing a spinner
    100 xp
    Simulating spinner data
    100 xp
    Bayes' rule
    50 xp
    The prior
    50 xp
    The likelihoods
    50 xp
    The posterior
    100 xp
    Interpreting the posterior
    50 xp
    Sequential Bayes
    50 xp
    Bayes with another spin
    100 xp
  2. 2

    Learning about a binomial probability

    This chapter describes learning about a population proportion using discrete and continuous models. You'll use a beta curve to represent prior opinion about the proportion, take a sample and observe the number of successes and failures, and construct a beta posterior curve that combines both the information in the prior and in the sample. You'll then use the beta posterior curve to draw inferences about the population proportion.

    Reproduzir Capítulo Agora
  3. 3

    Learning about a normal mean

    This chapter introduces Bayesian learning about a population mean. You'll sample from a normal population with an unknown mean and a known standard deviation, construct a normal prior to reflect your opinion about the location of the mean before sampling, and see that the posterior distribution also has a normal form with updated values of the mean and standard deviation. You'll also get more practice drawing inferences from the posterior distribution, only this time, about a population mean.

    Reproduzir Capítulo Agora
  4. 4

    Bayesian comparisons

    Suppose you're interested in comparing proportions from two populations. You take a random sample from each population and you want to learn about the difference in proportions. This chapter will illustrate the use of discrete and continuous priors to do this kind of inference. You'll use a Bayesian regression approach to learn about a mean or the difference in means when the sampling standard deviation is unknown.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

colaboradores

Collaborator's avatar
Nick Carchedi
Collaborator's avatar
Tom Jeon

pré-requisitos

Introduction to RFoundations of Probability in R
Jim Albert HeadshotJim Albert

Professor, Bowling Green State University

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Beginning Bayes in R hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.