Pular para o conteúdo principal
Página inicialPythonMachine Learning with Tree-Based Models in Python

Machine Learning with Tree-Based Models in Python

In this course, you'll learn how to use tree-based models and ensembles for regression and classification using scikit-learn.

Comece O Curso Gratuitamente
5 Horas15 Videos57 Exercicios
88.145 AprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

Decision trees are supervised learning models used for problems involving classification and regression. Tree models present a high flexibility that comes at a price: on one hand, trees are able to capture complex non-linear relationships; on the other hand, they are prone to memorizing the noise present in a dataset. By aggregating the predictions of trees that are trained differently, ensemble methods take advantage of the flexibility of trees while reducing their tendency to memorize noise. Ensemble methods are used across a variety of fields and have a proven track record of winning many machine learning competitions. In this course, you'll learn how to use Python to train decision trees and tree-based models with the user-friendly scikit-learn machine learning library. You'll understand the advantages and shortcomings of trees and demonstrate how ensembling can alleviate these shortcomings, all while practicing on real-world datasets. Finally, you'll also understand how to tune the most influential hyperparameters in order to get the most out of your models.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Certificação disponível

Cientista de dados associado em Python

Ir para a trilha

Cientista de aprendizado de máquina com Python

Ir para a trilha

Aprendizado de máquina supervisionado em Python

Ir para a trilha
  1. 1

    Classification and Regression Trees

    Grátis

    Classification and Regression Trees (CART) are a set of supervised learning models used for problems involving classification and regression. In this chapter, you'll be introduced to the CART algorithm.

    Reproduzir Capítulo Agora
    Decision tree for classification
    50 xp
    Train your first classification tree
    100 xp
    Evaluate the classification tree
    100 xp
    Logistic regression vs classification tree
    100 xp
    Classification tree Learning
    50 xp
    Growing a classification tree
    50 xp
    Using entropy as a criterion
    100 xp
    Entropy vs Gini index
    100 xp
    Decision tree for regression
    50 xp
    Train your first regression tree
    100 xp
    Evaluate the regression tree
    100 xp
    Linear regression vs regression tree
    100 xp
  2. 2

    The Bias-Variance Tradeoff

    The bias-variance tradeoff is one of the fundamental concepts in supervised machine learning. In this chapter, you'll understand how to diagnose the problems of overfitting and underfitting. You'll also be introduced to the concept of ensembling where the predictions of several models are aggregated to produce predictions that are more robust.

    Reproduzir Capítulo Agora
  3. 3

    Bagging and Random Forests

    Bagging is an ensemble method involving training the same algorithm many times using different subsets sampled from the training data. In this chapter, you'll understand how bagging can be used to create a tree ensemble. You'll also learn how the random forests algorithm can lead to further ensemble diversity through randomization at the level of each split in the trees forming the ensemble.

    Reproduzir Capítulo Agora
  4. 4

    Boosting

    Boosting refers to an ensemble method in which several models are trained sequentially with each model learning from the errors of its predecessors. In this chapter, you'll be introduced to the two boosting methods of AdaBoost and Gradient Boosting.

    Reproduzir Capítulo Agora
  5. 5

    Model Tuning

    The hyperparameters of a machine learning model are parameters that are not learned from data. They should be set prior to fitting the model to the training set. In this chapter, you'll learn how to tune the hyperparameters of a tree-based model using grid search cross validation.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Certificação disponível

Cientista de dados associado em Python

Ir para a trilha

Cientista de aprendizado de máquina com Python

Ir para a trilha

Aprendizado de máquina supervisionado em Python

Ir para a trilha

Conjuntos De Dados

Auto-mpgBike Sharing DemandWisconsin Breast CancerIndian Liver Patient

Colaboradores

Collaborator's avatar
Kara Woo
Collaborator's avatar
Eunkyung Park
Collaborator's avatar
Sumedh Panchadhar
Elie Kawerk HeadshotElie Kawerk

Senior Data Scientist

Veja Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 13 milhões de alunos e comece Machine Learning with Tree-Based Models in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.