Pular para o conteúdo principal
Página inicialPythonWriting Efficient Python Code

Writing Efficient Python Code

Learn to write efficient code that executes quickly and allocates resources skillfully to avoid unnecessary overhead.

Comece O Curso Gratuitamente
4 Horas15 Videos53 Exercicios
120.096 AprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

As a Data Scientist, the majority of your time should be spent gleaning actionable insights from data -- not waiting for your code to finish running. Writing efficient Python code can help reduce runtime and save computational resources, ultimately freeing you up to do the things you love as a Data Scientist. In this course, you'll learn how to use Python's built-in data structures, functions, and modules to write cleaner, faster, and more efficient code. We'll explore how to time and profile code in order to find bottlenecks. Then, you'll practice eliminating these bottlenecks, and other bad design patterns, using Python's Standard Library, NumPy, and pandas. After completing this course, you'll have the necessary tools to start writing efficient Python code!
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Certificação disponível

Engenheiro de dados em Python

Ir para a trilha

Python Programming

Ir para a trilha
  1. 1

    Foundations for efficiencies

    Grátis

    In this chapter, you'll learn what it means to write efficient Python code. You'll explore Python's Standard Library, learn about NumPy arrays, and practice using some of Python's built-in tools. This chapter builds a foundation for the concepts covered ahead.

    Reproduzir Capítulo Agora
    Welcome!
    50 xp
    Pop quiz: what is efficient
    50 xp
    A taste of things to come
    100 xp
    Zen of Python
    50 xp
    Building with built-ins
    50 xp
    Built-in practice: range()
    100 xp
    Built-in practice: enumerate()
    100 xp
    Built-in practice: map()
    100 xp
    The power of NumPy arrays
    50 xp
    Practice with NumPy arrays
    100 xp
    Bringing it all together: Festivus!
    100 xp
  2. 2

    Timing and profiling code

    In this chapter, you will learn how to gather and compare runtimes between different coding approaches. You'll practice using the line_profiler and memory_profiler packages to profile your code base and spot bottlenecks. Then, you'll put your learnings to practice by replacing these bottlenecks with efficient Python code.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Certificação disponível

Engenheiro de dados em Python

Ir para a trilha

Python Programming

Ir para a trilha

Conjuntos De Dados

Baseball statistics

Colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins
Logan Thomas HeadshotLogan Thomas

Scientific Software Technical Trainer, Enthought

Veja Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Writing Efficient Python Code hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.