Pular para o conteúdo principal
Página inicialPythonUnsupervised Learning in Python

Unsupervised Learning in Python

Learn how to cluster, transform, visualize, and extract insights from unlabeled datasets using scikit-learn and scipy.

Comece O Curso Gratuitamente
4 Horas13 Videos52 Exercicios
138.049 AprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

Say you have a collection of customers with a variety of characteristics such as age, location, and financial history, and you wish to discover patterns and sort them into clusters. Or perhaps you have a set of texts, such as Wikipedia pages, and you wish to segment them into categories based on their content. This is the world of unsupervised learning, called as such because you are not guiding, or supervising, the pattern discovery by some prediction task, but instead uncovering hidden structure from unlabeled data. Unsupervised learning encompasses a variety of techniques in machine learning, from clustering to dimension reduction to matrix factorization. In this course, you'll learn the fundamentals of unsupervised learning and implement the essential algorithms using scikit-learn and SciPy. You will learn how to cluster, transform, visualize, and extract insights from unlabeled datasets, and end the course by building a recommender system to recommend popular musical artists.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Certificação disponível

Cientista de dados associado em Python

Ir para a trilha

Machine Learning Fundamentals with Python

Ir para a trilha

Cientista de aprendizado de máquina com Python

Ir para a trilha
  1. 1

    Clustering for Dataset Exploration

    Grátis

    Learn how to discover the underlying groups (or "clusters") in a dataset. By the end of this chapter, you'll be clustering companies using their stock market prices, and distinguishing different species by clustering their measurements.

    Reproduzir Capítulo Agora
    Unsupervised Learning
    50 xp
    How many clusters?
    50 xp
    Clustering 2D points
    100 xp
    Inspect your clustering
    100 xp
    Evaluating a clustering
    50 xp
    How many clusters of grain?
    100 xp
    Evaluating the grain clustering
    100 xp
    Transforming features for better clusterings
    50 xp
    Scaling fish data for clustering
    100 xp
    Clustering the fish data
    100 xp
    Clustering stocks using KMeans
    100 xp
    Which stocks move together?
    100 xp
  2. 2

    Visualization with Hierarchical Clustering and t-SNE

    In this chapter, you'll learn about two unsupervised learning techniques for data visualization, hierarchical clustering and t-SNE. Hierarchical clustering merges the data samples into ever-coarser clusters, yielding a tree visualization of the resulting cluster hierarchy. t-SNE maps the data samples into 2d space so that the proximity of the samples to one another can be visualized.

    Reproduzir Capítulo Agora
  3. 3

    Decorrelating Your Data and Dimension Reduction

    Dimension reduction summarizes a dataset using its common occuring patterns. In this chapter, you'll learn about the most fundamental of dimension reduction techniques, "Principal Component Analysis" ("PCA"). PCA is often used before supervised learning to improve model performance and generalization. It can also be useful for unsupervised learning. For example, you'll employ a variant of PCA will allow you to cluster Wikipedia articles by their content!

    Reproduzir Capítulo Agora
  4. 4

    Discovering Interpretable Features

    In this chapter, you'll learn about a dimension reduction technique called "Non-negative matrix factorization" ("NMF") that expresses samples as combinations of interpretable parts. For example, it expresses documents as combinations of topics, and images in terms of commonly occurring visual patterns. You'll also learn to use NMF to build recommender systems that can find you similar articles to read, or musical artists that match your listening history!

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Certificação disponível

Cientista de dados associado em Python

Ir para a trilha

Machine Learning Fundamentals with Python

Ir para a trilha

Cientista de aprendizado de máquina com Python

Ir para a trilha

Conjuntos De Dados

Company stock price movementsEurovision 2016Fish measurementsGrainsLCD digitsMusical artistsWikipedia articlesWine

Colaboradores

Collaborator's avatar
Yashas Roy
Collaborator's avatar
Hugo Bowne-Anderson
Benjamin Wilson HeadshotBenjamin Wilson

Director of Research at lateral.io

Veja Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 13 milhões de alunos e comece Unsupervised Learning in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.