Pular para o conteúdo principal
Página inicialPythonIntroduction to Natural Language Processing in Python

Introduction to Natural Language Processing in Python

Learn fundamental natural language processing techniques using Python and how to apply them to extract insights from real-world text data.

Comece O Curso Gratuitamente
4 Horas15 Videos51 Exercicios
116.746 AprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

In this course, you'll learn natural language processing (NLP) basics, such as how to identify and separate words, how to extract topics in a text, and how to build your own fake news classifier. You'll also learn how to use basic libraries such as NLTK, alongside libraries which utilize deep learning to solve common NLP problems. This course will give you the foundation to process and parse text as you move forward in your Python learning.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Cientista de aprendizado de máquina com Python

Ir para a trilha

Processamento de linguagem natural em Python

Ir para a trilha
  1. 1

    Regular expressions & word tokenization

    Grátis

    This chapter will introduce some basic NLP concepts, such as word tokenization and regular expressions to help parse text. You'll also learn how to handle non-English text and more difficult tokenization you might find.

    Reproduzir Capítulo Agora
    Introduction to regular expressions
    50 xp
    Which pattern?
    50 xp
    Practicing regular expressions: re.split() and re.findall()
    100 xp
    Introduction to tokenization
    50 xp
    Word tokenization with NLTK
    100 xp
    More regex with re.search()
    100 xp
    Advanced tokenization with NLTK and regex
    50 xp
    Choosing a tokenizer
    50 xp
    Regex with NLTK tokenization
    100 xp
    Non-ascii tokenization
    100 xp
    Charting word length with NLTK
    50 xp
    Charting practice
    100 xp
  2. 2

    Simple topic identification

    This chapter will introduce you to topic identification, which you can apply to any text you encounter in the wild. Using basic NLP models, you will identify topics from texts based on term frequencies. You'll experiment and compare two simple methods: bag-of-words and Tf-idf using NLTK, and a new library Gensim.

    Reproduzir Capítulo Agora
  3. 3

    Named-entity recognition

    This chapter will introduce a slightly more advanced topic: named-entity recognition. You'll learn how to identify the who, what, and where of your texts using pre-trained models on English and non-English text. You'll also learn how to use some new libraries, polyglot and spaCy, to add to your NLP toolbox.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Cientista de aprendizado de máquina com Python

Ir para a trilha

Processamento de linguagem natural em Python

Ir para a trilha

Conjuntos De Dados

English stopwordsMonty Python and the Holy GrailNews articlesWikipedia articles

Colaboradores

Collaborator's avatar
Hugo Bowne-Anderson
Collaborator's avatar
Yashas Roy

Pre Requisitos

Python Toolbox
Katharine Jarmul HeadshotKatharine Jarmul

Founder, kjamistan

Veja Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Introduction to Natural Language Processing in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.