Skip to main content

Practicing Coding Interview Questions in Python

Prepare for your next coding interviews in Python.

Start Course for Free
4 Hours16 Videos61 Exercises14,407 Learners5050 XPPython Toolbox Track

Create Your Free Account



By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies

Course Description

Coding interviews can be challenging. You might be asked questions to test your knowledge of a programming language. On the other side, you can be given a task to solve in order to check how you think. And when you are interviewed for a data scientist position, it's likely you can be asked on the corresponding tools available for the language. In either of the cases, to get a cool position as a data scientist, you need to do a little work to perform the best. That's why it's very important to practice in order to prove your expertise! This course serves as a guide for those who just start their path to become a professional data scientist and as a refresher for those who seek for other opportunities. We'll go through fundamental as well as advanced topics that aim to prepare you for a coding interview in Python. Since it is not a normal step-by-step course, some exercises can be quite complex. But who said that interviews are easy to pass, right?

  1. 1

    Python Data Structures and String Manipulation


    In this chapter, we'll refresh our knowledge of the main data structures used in Python. We'll cover how to deal with lists, tuples, sets, and dictionaries. We'll also consider strings and how to write regular expressions to retrieve specific character sequences from a given text.

    Play Chapter Now
    What are the main data structures in Python?
    50 xp
    List methods
    100 xp
    Operations on sets
    50 xp
    Storing data in a dictionary
    100 xp
    What are common ways to manipulate strings?
    50 xp
    String indexing and concatenation
    100 xp
    Operations on strings
    100 xp
    Fixing string errors in a DataFrame
    100 xp
    How to write regular expressions in Python?
    50 xp
    Write a regular expression
    100 xp
    Find the correct pattern
    50 xp
    Splitting by a pattern
    100 xp
  2. 2

    Iterable objects and representatives

    This chapter focuses on iterable objects. We'll refresh the definition of iterable objects and explain, how to identify one. Next, we'll cover list comprehensions, which is a very special feature of Python programming language to define lists. Then, we'll recall how to combine several iterable objects into one. Finally, we'll cover how to create custom iterable objects using generators.

    Play Chapter Now
  3. 3

    Functions and lambda expressions

    This chapter will focus on the functional aspects of Python. We'll start by defining functions with a variable amount of positional as well as keyword arguments. Next, we'll cover lambda functions and in which cases they can be helpful. Especially, we'll see how to use them with such functions as map(), filter(), and reduce(). Finally, we'll recall what is recursion and how to correctly implement one.

    Play Chapter Now
  4. 4

    Python for scientific computing

    This chapter will cover topics on scientific computing in Python. We'll start by explaining the difference between NumPy arrays and lists. We'll define why the former ones suit better for complex calculations. Next, we'll cover some useful techniques to manipulate with pandas DataFrames. Finally, we'll do some data visualization using scatterplots, histograms, and boxplots.

    Play Chapter Now

In the following tracks

Python Toolbox


hadrien-d4e73b49-bc29-46b7-a485-2f598f38e3b9Hadrien Lacroixhillary-green-lermanHillary Green-Lerman
Kirill Smirnov Headshot

Kirill Smirnov

Data Science Consultant @ Altran

I am a self-taught data scientist and algorithm developer. I did my Bachelor's and Master's degree in Biophysics. Afterwards, I obtained my PhD degree working in the department of analytical BioGeoChemistry in Helmholtz Center Munich. During this time I discovered my passion for data science due to the necessity to analyze huge biological datasets. Moreover, I really enjoy programming, especially in the context of algorithm development and optimization.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA