Saltar al contenido principal
InicioRCase Studies: Network Analysis in R

Case Studies: Network Analysis in R

Apply fundamental concepts in network analysis to large real-world datasets in 4 different case studies.

Comience El Curso Gratis
4 horas11 vídeos47 ejercicios
3655 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Now that you're familiar with the basics of network analysis it's time to see how to apply those concepts to large real-world data sets. You'll work through three different case studies, each building on your previous work. These case studies are working with the kinds of data you'll see in both academic and industry settings. We'll explore some of the computational and visualization challenges you'll face and how to overcome them. Your knowledge of igraph will continue to grow, but we'll also leverage other visualization libraries that will help you bring your visualizations to the web.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Análisis de redes in R

Ir a la pista
  1. 1

    Exploring graphs through time

    Gratuito

    In this chapter you'll explore a subset of an Amazon purchase graph. You'll build on what you've already learned, finding important products and discovering what drives purchases. You'll also examine how graphs can change through time by looking at the graph during different time periods.

    Reproducir Capítulo Ahora
    Exploring your data set
    50 xp
    Finding Dyads and Triads
    100 xp
    Clustering and Reciprocity
    100 xp
    Important Products
    100 xp
    What Makes an Important Product?
    100 xp
    Exploring temporal structure
    50 xp
    Metrics through time
    100 xp
    Plotting Metrics Over Time
    100 xp
  2. 2

    How do people talk about R on Twitter?

    In this lesson you'll explore some Twitter data about R by looking at conversations using '#rstats'. First you'll look at the raw data and think about how you want to build your graph. There's a number of ways to do this, and we'll cover two ways: retweets and mentions. You'll build those graphs and then compare them on a number of metrics.

    Reproducir Capítulo Ahora
  3. 3

    Bike sharing in Chicago

    In this chapter you will analyze data from a Chicago bike sharing network. We will build on the concepts already covered in the introductory course, and add a few new ones to handle graphs with weighted edges. You will also start with data in a slightly more raw form and cover how to build your graph up from a data source you might find.

    Reproducir Capítulo Ahora
  4. 4

    Other ways to visualize graph data

    So far everything we've done has been using plotting from igraph. It provides many powerful ways to plot your graph data. However many people prefer interacting with other plotting frameworks like ggplot2, or even interactive frameworks like d3.js. In this lesson you'll look at other plotting libraries that build on the ggplot2 framework. You'll also look at other non-"hairball" type methods like hive plots, as well as building interactive and animated plots.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

En las siguientes pistas

Análisis de redes in R

Ir a la pista

conjuntos de datos

Amazon graphAmazon purchase graph over timeTwitter retweet graphTwitter mention graphBike sharing data

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Nick Solomon
Collaborator's avatar
Benjamin Feder

requisitos previos

Network Analysis in R
Ted Hart HeadshotTed Hart

Senior Data Scientist

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Case Studies: Network Analysis in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.