Saltar al contenido principal
InicioRCategorical Data in the Tidyverse

Categorical Data in the Tidyverse

Get ready to categorize! In this course, you will work with non-numerical data, such as job titles or survey responses, using the Tidyverse landscape.

Comience El Curso Gratis
4 Horas13 Videos44 Ejercicios
14.337 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

As a data scientist, you will often find yourself working with non-numerical data, such as job titles, survey responses, or demographic information. R has a special way of representing them, called factors, and this course will help you master working with them using the tidyverse package forcats. We’ll also work with other tidyverse packages, including ggplot2, dplyr, stringr, and tidyr and use real world datasets, such as the fivethirtyeight flight dataset and Kaggle’s State of Data Science and ML Survey. Following this course, you’ll be able to identify and manipulate factor variables, quickly and efficiently visualize your data, and effectively communicate your results. Get ready to categorize!
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Tidyverse Fundamentals con R

Ir a la pista
  1. 1

    Introduction to Factor Variables

    Gratuito

    In this chapter, you’ll learn all about factors. You’ll discover the difference between categorical and ordinal variables, how R represents them, and how to inspect them to find the number and names of the levels. Finally, you’ll find how forcats, a tidyverse package, can improve your plots by letting you quickly reorder variables by their frequency.

    Reproducir Capítulo Ahora
    Introduction to qualitative variables
    50 xp
    Recognizing factor variables
    100 xp
    Qualitative variables in theory
    50 xp
    Understanding your qualitative variables
    50 xp
    Getting number of levels
    100 xp
    Examining number of levels
    100 xp
    Examining levels
    100 xp
    Making better plots
    50 xp
    Reordering a variable by its frequency
    100 xp
    Ordering one variable by another
    100 xp
  2. 3

    Creating Factor Variables

    Having gotten a good grasp of forcats, you’ll expand out to the rest of the tidyverse, learning and reviewing functions from dplyr, tidyr, and stringr. You’ll refine graphs with ggplot2 by changing axes to percentage scales, editing the layout of the text, and more.

    Reproducir Capítulo Ahora
  3. 4

    Case Study on Flight Etiquette

    In this final chapter, you’ll take all that you’ve learned and apply it in a case study. You’ll learn more about working with strings and summarizing data, then replicate a publication quality 538 plot.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

En las siguientes pistas

Tidyverse Fundamentals con R

Ir a la pista

Conjuntos De Datos

538 Flying Etiquette surveyKaggle multiple choice responses

Colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins

Requisitos Previos

Reshaping Data with tidyr
Emily Robinson HeadshotEmily Robinson

Senior Data Scientist, Game Data Pros

Ver Mas

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Categorical Data in the Tidyverse hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.