Saltar al contenido principal
InicioRCategorical Data in the Tidyverse

# Categorical Data in the Tidyverse

Get ready to categorize! In this course, you will work with non-numerical data, such as job titles or survey responses, using the Tidyverse landscape.

Comience El Curso Gratis
4 Horas13 Videos44 Ejercicios
14.337 AprendicesDeclaración de cumplimiento

## Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

## Descripción del curso

As a data scientist, you will often find yourself working with non-numerical data, such as job titles, survey responses, or demographic information. R has a special way of representing them, called factors, and this course will help you master working with them using the tidyverse package forcats. We’ll also work with other tidyverse packages, including ggplot2, dplyr, stringr, and tidyr and use real world datasets, such as the fivethirtyeight flight dataset and Kaggle’s State of Data Science and ML Survey. Following this course, you’ll be able to identify and manipulate factor variables, quickly and efficiently visualize your data, and effectively communicate your results. Get ready to categorize!
Empresas

### .css-1goj2uy{margin-right:8px;}Group.css-gnv7tt{font-size:20px;font-weight:700;white-space:nowrap;}.css-12nwtlk{box-sizing:border-box;margin:0;min-width:0;color:#05192D;font-size:16px;line-height:1.5;font-size:20px;font-weight:700;white-space:nowrap;}¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

Ir a la pista
1. 1

### Introduction to Factor Variables

Gratuito

In this chapter, you’ll learn all about factors. You’ll discover the difference between categorical and ordinal variables, how R represents them, and how to inspect them to find the number and names of the levels. Finally, you’ll find how forcats, a tidyverse package, can improve your plots by letting you quickly reorder variables by their frequency.

Reproducir Capítulo Ahora
Introduction to qualitative variables
50 xp
Recognizing factor variables
100 xp
Qualitative variables in theory
50 xp
50 xp
Getting number of levels
100 xp
Examining number of levels
100 xp
Examining levels
100 xp
Making better plots
50 xp
Reordering a variable by its frequency
100 xp
Ordering one variable by another
100 xp
2. 2

### Manipulating Factor Variables

You’ll continue to dive into the forcats package, learning how to change the order and names of levels and even collapse them into one another.

3. 3

### Creating Factor Variables

Having gotten a good grasp of forcats, you’ll expand out to the rest of the tidyverse, learning and reviewing functions from dplyr, tidyr, and stringr. You’ll refine graphs with ggplot2 by changing axes to percentage scales, editing the layout of the text, and more.

4. 4

### Case Study on Flight Etiquette

In this final chapter, you’ll take all that you’ve learned and apply it in a case study. You’ll learn more about working with strings and summarizing data, then replicate a publication quality 538 plot.

Empresas

### Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

### En las siguientes pistas

#### Tidyverse Fundamentals con R

Ir a la pista

Conjuntos De Datos

538 Flying Etiquette surveyKaggle multiple choice responses

Requisitos Previos

Reshaping Data with tidyr
Emily Robinson

Senior Data Scientist, Game Data Pros

Ver Mas