Saltar al contenido principal
InicioPythonHR Analytics: Predicting Employee Churn in Python

HR Analytics: Predicting Employee Churn in Python

In this course you'll learn how to apply machine learning in the HR domain.

Comience El Curso Gratis
4 Horas14 Videos44 Ejercicios
7909 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Among all of the business domains, HR is still the least disrupted. However, the latest developments in data collection and analysis tools and technologies allow for data driven decision-making in all dimensions, including HR. This course will provide a solid basis for dealing with employee data and developing a predictive model to analyze employee turnover.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Introduction to HR Analytics

    Gratuito

    In this chapter you will learn about the problems addressed by HR analytics, as well as will explore a sample HR dataset that will further be analyzed. You will describe and visualize some of the key variables, transform and manipulate the dataset to make it ready for analytics.

    Reproducir Capítulo Ahora
    Introduction and overview
    50 xp
    Finding categorical variables
    100 xp
    Observing categoricals
    100 xp
    Transforming categorical variables
    50 xp
    Encoding categories
    100 xp
    Getting dummies
    100 xp
    Dummy trap
    100 xp
    Descriptive statistics
    50 xp
    Correlations in the employee data
    50 xp
    Percentage of employees who churn
    100 xp
  2. 4

    Choosing the best turnover prediction model

    In this final chapter, you will learn how to use cross-validation to avoid overfitting the training data. You will also learn how to know which features are impactful, and which are negligible. Finally, you will use these newly acquired skills to build a better performing Decision Tree!

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

Sets De Datos

Employee turnover data

Colaboradores

Collaborator's avatar
Lore Dirick
Collaborator's avatar
Nick Solomon

Requisitos Previos

Intermediate Python
Hrant Davtyan HeadshotHrant Davtyan

Assistant Professor of Data Science at the American University of Armenia

Ver Mas

¿Qué tienen que decir otros alumnos?

¡Únete a 13 millones de estudiantes y empieza HR Analytics: Predicting Employee Churn in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.