Saltar al contenido principal
InicioR

Machine Learning in the Tidyverse

Leverage tidyr and purrr packages in the tidyverse to generate, explore, and evaluate machine learning models.

Comienza El Curso Gratis
5 horas15 vídeos52 ejercicios15.037 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Welcome to the tidyverse! In this course, you will continue on your journey to learn the tidyverse and apply your knowledge to machine learning concepts.

This course is ideal if you’re looking to integrate R's Tidyverse tools into your machine learning workflows.

Evaluating machine learning models

Throughout this course, you will focus on leveraging the tidyverse tools in R to build, explore, and evaluate machine learning models efficiently.

The course begins by introducing the List Column Workflow (LCW), a method for managing multiple models within a single dataframe. It also covers using the broom package to tidy up and explore model outputs, making the complex results more interpretable.

Utilizing tidyr and purrr

Work through practical exercises including building and evaluating regression along with classification models. Explore techniques for tuning hyperparameters to optimize model performance.

You will use packages like tidyr and purrr to handle complex data manipulations and model evaluations, ensuring a tidy and systematic approach to machine learning.

Gain real-world application

Explore real-world examples through multiple case studies, such as using the gapminder dataset to predict life expectancy with linear models.

By the end of the course, you will have a strong foundation in applying Tidyverse principles to machine learning, enabling them to build, tune, and evaluate models efficiently in a tidy and reproducible manner.
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Caja de herramientas intermedia de Tidyverse

Ir a la pista

Científico de machine learning in R

Ir a la pista

Aprendizaje automático supervisado en R

Ir a la pista
  1. 1

    Foundations of "tidy" Machine learning

    Gratuito

    This chapter will introduce you to the backbone of machine learning in the tidyverse, the List Column Workflow (LCW). The LCW will empower you to work with many models in one dataframe.
    This chapter will also introduce you to the fundamentals of the broom package for exploring your models.

    Reproducir Capítulo Ahora
    Foundations of "tidy" machine learning
    50 xp
    Nesting your data
    100 xp
    Unnesting your data
    100 xp
    Explore a nested cell
    100 xp
    The map family of functions
    50 xp
    Mapping your data
    100 xp
    Expecting mapped output
    100 xp
    Mapping many models
    100 xp
    Tidy your models with broom
    50 xp
    The three ways to tidy your model
    50 xp
    Extracting model statistics tidily
    100 xp
    Augmenting your data
    100 xp
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

En las siguientes pistas

Caja de herramientas intermedia de Tidyverse

Ir a la pista

Científico de machine learning in R

Ir a la pista

Aprendizaje automático supervisado en R

Ir a la pista

conjuntos de datos

GapminderAttrition

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Sumedh Panchadhar
Collaborator's avatar
Eunkyung Park
Dmitriy Gorenshteyn HeadshotDmitriy Gorenshteyn

Lead Data Scientist at Memorial Sloan Kettering Cancer Center

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Machine Learning in the Tidyverse hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.