curso
Machine learning con PySpark
Avanzado
Actualizado 1/2025Comienza el curso gratis
Incluido conPremium or Teams
SparkMachine Learning4 horas16 vídeos56 ejercicios4,550 XP24,345Certificado de logros
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.¿Entrenar a 2 o más personas?
Probar DataCamp for BusinessPreferido por estudiantes en miles de empresas
Descripción del curso
Aprende a utilizar Apache Spark para el machine learning
Spark es una potente herramienta de propósito general para trabajar con Big Data. Spark gestiona de forma transparente la distribución de tareas de cálculo en un clúster. Esto significa que las operaciones son rápidas, pero también te permite centrarte en el análisis en lugar de preocuparte por los detalles técnicos. En este curso aprenderás a introducir datos en Spark y, a continuación, profundizarás en los tres algoritmos fundamentales de Spark Machine learning: Regresión lineal, regresión logística/clasificadores y creación de pipelines.Construir y probar árboles de decisión
Construir tus propios árboles de decisión es una forma estupenda de empezar a explorar los modelos de machine learning. Utilizarás un algoritmo llamado "Partición Recursiva" para dividir los datos en dos clases y encontrar un predictor dentro de tus datos que dé como resultado la división más informativa de las dos clases, y repetirás esta acción con más nodos. Luego puedes utilizar tu árbol de decisión para hacer predicciones con nuevos datos.Domina la Regresión Logística y Lineal en PySpark
La regresión logística y lineal son técnicas esenciales de machine learning compatibles con PySpark. Aprenderás a construir y evaluar modelos de regresión logística, antes de pasar a crear modelos de regresión lineal para ayudarte a refinar tus predictores a sólo las opciones más relevantes.Al final del curso, te sentirás seguro al aplicar tus nuevos conocimientos sobre machine learning, gracias a las tareas prácticas y a los conjuntos de datos de práctica que encontrarás a lo largo del curso.
Prerrequisitos
Introduction to PySparkSupervised Learning with scikit-learn1
Introducción
2
Clasificación
3
Regresión
4
Conjuntos y tuberías
Machine learning con PySpark
Curso Completo
Obtener certificado de logros
Añade esta credencial a tu perfil, currículum vitae o CV de LinkedInCompártelo en las redes sociales y en tu evaluación de desempeño
Incluido conPremium or Teams
Inscríbete ahoraÚnete a más 15 millones de estudiantes y empezar Machine learning con PySpark ¡Hoy!
Crea Tu Cuenta Gratuita
o
Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.