Saltar al contenido principal
InicioPythonParallel Programming with Dask in Python

Parallel Programming with Dask in Python

Learn how to use Python parallel programming with Dask to upscale your workflows and efficiently handle big data.

Comience El Curso Gratis
4 horas15 vídeos51 ejercicios3700 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Use Parallel Processing to Speed Up Your Python Code

With this 4-hour course, you’ll discover how parallel processing with Dask in Python can make your workflows faster.

When working with big data, you’ll face two common obstacles: using too much memory and long runtimes. The Dask library can lower your memory use by loading chunks of data only when needed. It can lower runtimes by using all your available computing cores in parallel. Best of all, it requires very few changes to your existing Python code.

Analyze Big Structured Data Using Dask DataFrames

In this course, you use Dask to analyze Spotify song data, process images of sign language gestures, calculate trends in weather data, analyze audio recordings, and train machine learning models on big data.

You’ll start by learning the basics of Dask, exploring how parallel processing in Python can speed up almost any code. Next, you’ll explore Dask DataFrames and arrays and how to use them to analyze big structured data.

Train machine learning models using Dask-ML

As you progress through the 51 exercises in this course, you’ll learn how to process any type of data, using Dask bags to work with unstructured and structured data. Finally, you’ll learn how to use Dask in Python to train machine learning models and improve your computing speeds.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Lazy Evaluation and Parallel Computing

    Gratuito

    This chapter will teach you the basics of Dask and lazy evaluation. At the end of this chapter, you'll be able to speed up almost any Python code by using parallel processing or multi-threading. You'll learn the difference between these two task scheduling methods and which one is better under which circumstances.

    Reproducir Capítulo Ahora
    Introduction to Dask
    50 xp
    Lazy evaluation
    50 xp
    Delaying functions
    100 xp
    Task graphs and scheduling methods
    50 xp
    What are the different schedulers?
    100 xp
    Plotting the task graph
    100 xp
    Building delayed pipelines
    50 xp
    Analyzing songs on Spotify
    100 xp
    How danceable are songs these days?
    100 xp
    Most popular songs
    100 xp
  2. 4

    Dask Machine Learning and Final Pieces

    Harness the power of Dask to train machine learning models. You'll learn how to train machine learning models on big data using the Dask-ML package, and how to split Dask calculations across a mixture of processes and threads for even greater computing speed.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

conjuntos de datos

Spotify Songs - CSVSpotify Songs - ParquetEuropean Rainfall - HDF5European Rainfall - ZarrTripadvisor Hotel ReviewsPoliticians

colaboradores

Collaborator's avatar
Amy Peterson
Collaborator's avatar
James Chapman
James Fulton HeadshotJames Fulton

Climate Informatics Researcher

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Parallel Programming with Dask in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.