Saltar al contenido principal
InicioPythonPracticing Statistics Interview Questions in Python

Practicing Statistics Interview Questions in Python

Prepare for your next statistics interview by reviewing concepts like conditional probabilities, A/B testing, the bias-variance tradeoff, and more.

Comience El Curso Gratis
4 horas15 vídeos46 ejercicios
14.707 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Are you looking to land that next job or hone your statistics interview skills to stay sharp? Get ready to master classic interview concepts ranging from conditional probabilities to A/B testing to the bias-variance tradeoff, and much more! You’ll work with a diverse collection of datasets including web-based experiment results and Australian weather data. Following the course, you’ll be able to confidently walk into your next interview and tackle any statistics questions with the help of Python!
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Probability and Sampling Distributions

    Gratuito

    This chapter kicks the course off by reviewing conditional probabilities, Bayes' theorem, and central limit theorem. Along the way, you will learn how to handle questions that work with commonly referenced probability distributions.

    Reproducir Capítulo Ahora
    Conditional probabilities
    50 xp
    Setting up problems
    50 xp
    Bayes' theorem applied
    100 xp
    Central limit theorem
    50 xp
    Samples from a rolled die
    100 xp
    Simulating central limit theorem
    100 xp
    Probability distributions
    50 xp
    Bernoulli distribution
    100 xp
    Binomial distribution
    100 xp
    Normal distribution
    100 xp
  2. 2

    Exploratory Data Analysis

    In this chapter, you will prepare for statistical concepts related to exploratory data analysis. The topics include descriptive statistics, dealing with categorical variables, and relationships between variables. The exercises will prepare you for an analytical assessment or stats-based coding question.

    Reproducir Capítulo Ahora
  3. 3

    Statistical Experiments and Significance Testing

    Prepare to dive deeper into crucial concepts regarding experiments and testing by reviewing confidence intervals, hypothesis testing, multiple tests, and the role that power and sample size play. We'll also discuss types of errors, and what they mean in practice.

    Reproducir Capítulo Ahora
  4. 4

    Regression and Classification

    Wrapping up, we'll address concepts related closely to regression and classification models. The chapter begins by reviewing fundamental machine learning algorithms and quickly ramps up to model evaluation, dealing with special cases, and the bias-variance tradeoff.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

colaboradores

Collaborator's avatar
Mona Khalil
Collaborator's avatar
Amy Peterson

requisitos previos

Hypothesis Testing in PythonSupervised Learning with scikit-learn
Conor Dewey HeadshotConor Dewey

Data Scientist, Squarespace

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Practicing Statistics Interview Questions in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.