Saltar al contenido principal
InicioR

curso

Predictive Analytics using Networked Data in R

Intermedio
Actualizado 2/2025
Learn to predict labels of nodes in networks using network learning and by extracting descriptive features from the network
Comienza el curso gratis

Incluido conPremium or Teams

RProbability & Statistics4 horas14 vídeos56 ejercicios4,300 XP4,514Certificado de logros

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas

Descripción del curso

In this course, you will learn to perform state-of-the art predictive analytics using networked data in R. The aim of network analytics is to predict to which class a network node belongs, such as churner or not, fraudster or not, defaulter or not, etc. To accomplish this, we discuss how to leverage information from the network and its underlying structure in a predictive way. More specifically, we introduce the idea of featurization such that network features can be added to non-network features as such boosting the performance of any resulting analytical model. In this course, you will use the igraph package to generate and label a network of customers in a churn setting and learn about the foundations of network learning. Then, you will learn about homophily, dyadicity and heterophilicty, and how these can be used to get key exploratory insights in your network. Next, you will use the functionality of the igraph package to compute various network features to calculate both node-centric as well as neighbor based network features. Furthermore, you will use the Google PageRank algorithm to compute network features and empirically validate their predictive power. Finally, we teach you how to generate a flat dataset from the network and analyze it using logistic regression and random forests.

Prerrequisitos

Network Analysis in RSupervised Learning in R: Classification
1

Introduction, networks and labelled networks

Iniciar capítulo
3

Network Featurization

Iniciar capítulo
4

Putting it all together

Iniciar capítulo
Predictive Analytics using Networked Data in R
Curso
Completo

Obtener certificado de logros

Añade esta credencial a tu perfil, currículum vitae o CV de LinkedIn
Compártelo en las redes sociales y en tu evaluación de desempeño

Incluido conPremium or Teams

Inscríbete ahora

Únete a más 16 millones de estudiantes y empezar Predictive Analytics using Networked Data in R hoy

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.