Saltar al contenido principal
InicioRScalable Data Processing in R

Scalable Data Processing in R

Learn how to write scalable code for working with big data in R using the bigmemory and iotools packages.

Comience El Curso Gratis
4 horas15 vídeos49 ejercicios
5802 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Datasets are often larger than available RAM, which causes problems for R programmers since by default all the variables are stored in memory. You’ll learn tools for processing, exploring, and analyzing data directly from disk. You’ll also implement the split-apply-combine approach and learn how to write scalable code using the bigmemory and iotools packages. In this course, you'll make use of the Federal Housing Finance Agency's data, a publicly available data set chronicling all mortgages that were held or securitized by both Federal National Mortgage Association (Fannie Mae) and Federal Home Loan Mortgage Corporation (Freddie Mac) from 2009-2015.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Grandes datos in R

Ir a la pista
  1. 1

    Working with increasingly large data sets

    Gratuito

    In this chapter, we cover the reasons you need to apply new techniques when data sets are larger than available RAM. We show that importing and exporting data using the base R functions can be slow and some easy ways to remedy this. Finally, we introduce the bigmemory package.

    Reproducir Capítulo Ahora
    What is Scalable Data Processing?
    50 xp
    Why is your code slow?
    50 xp
    How does processing time vary by data size?
    100 xp
    Working with "Out-of-Core" Objects using the Bigmemory Project
    50 xp
    Reading a big.matrix object
    100 xp
    Attaching a big.matrix object
    100 xp
    Creating tables with big.matrix objects
    100 xp
    Data summary using bigsummary
    100 xp
    References vs. Copies
    50 xp
    Copying matrices and big matrices
    100 xp
  2. 2

    Processing and Analyzing Data with bigmemory

    Now that you've got some experience using bigmemory, we're going to go through some simple data exploration and analysis techniques. In particular, we'll see how to create tables and implement the split-apply-combine approach.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

En las siguientes pistas

Grandes datos in R

Ir a la pista

conjuntos de datos

Mortgage data (sample)

colaboradores

Collaborator's avatar
Sumedh Panchadhar
Collaborator's avatar
Richie Cotton

requisitos previos

Writing Efficient R Code
Michael Kane HeadshotMichael Kane

Assistant Professor at Yale University

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Scalable Data Processing in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.