Saltar al contenido principal
InicioRStructural Equation Modeling with lavaan in R

Structural Equation Modeling with lavaan in R

Learn how to create and assess measurement models used to confirm the structure of a scale or questionnaire.

Comience El Curso Gratis
4 horas14 vídeos45 ejercicios
8835 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

When working with data, we often want to create models to predict future events, but we also want an even deeper understanding of how our data is connected or structured. In this course, you will explore the connectedness of data using using structural equation modeling (SEM) with the R programming language using the lavaan package. SEM will introduce you to latent and manifest variables and how to create measurement models, assess measurement model accuracy, and fix poor fitting models. During the course, you will explore classic SEM datasets, such as the Holzinger and Swineford (1939) and Bollen (1989) datasets. You will also work through a multi-factor model case study using the Wechsler Adult Intelligence Scale. Following this course, you will be able to dive into your data and gain a much deeper understanding of how it all fits together.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    One-Factor Models

    Gratuito

    In this chapter, you will dive into creating your first structural equation model with lavaan. You will learn important terminology, how to build, and run models. You will create a one-factor model of mental test abilities using the classic Holzinger and Swineford (1939) dataset.

    Reproducir Capítulo Ahora
    Model Specification
    50 xp
    Build Text Speed Model
    100 xp
    Build Political Democracy Model
    100 xp
    Model Analysis
    50 xp
    Analyze Text Speed Model
    100 xp
    Summarize Political Democracy
    50 xp
    Model Assessment
    50 xp
    Examine Standardized Loadings
    100 xp
    Explore Fit Indices
    100 xp
    Examine Political Democracy
    100 xp
  2. 3

    Troubleshooting Model Errors and Diagrams

    Structural equation models do not always run smoothly, and in this chapter, you will learn how to troubleshoot Heywood cases which are common errors. You will also learn how to diagram your model in R using the semPlot library.

    Reproducir Capítulo Ahora
  3. 4

    Full Example and an Extension

    This chapter examines the WAIS-III IQ Scale and its structural properties. You will use your skills from the first three chapters to create various models of the WAIS-III, troubleshoot errors in those models, and create diagrams of the final model.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

conjuntos de datos

WAIS-III IQ Data for Hierarchical ModelLatent Variable Heywood Case DataNegative Variance Heywood Case Data

colaboradores

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Becca Robins
Erin Buchanan HeadshotErin Buchanan

Professor at Harrisburg University of Science and Technology

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Structural Equation Modeling with lavaan in R hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.