Pular para o conteúdo principal
Página inicialPythonCluster Analysis in Python

Cluster Analysis in Python

In this course, you will be introduced to unsupervised learning through techniques such as hierarchical and k-means clustering using the SciPy library.

Comece O Curso Gratuitamente
4 Horas14 Videos46 Exercicios
53.708 AprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

You have probably come across Google News, which automatically groups similar news articles under a topic. Have you ever wondered what process runs in the background to arrive at these groups? In this course, you will be introduced to unsupervised learning through clustering using the SciPy library in Python. This course covers pre-processing of data and application of hierarchical and k-means clustering. Through the course, you will explore player statistics from a popular football video game, FIFA 18. After completing the course, you will be able to quickly apply various clustering algorithms on data, visualize the clusters formed and analyze results.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Cientista de aprendizado de máquina com Python

Ir para a trilha
  1. 1

    Introduction to Clustering

    Grátis

    Before you are ready to classify news articles, you need to be introduced to the basics of clustering. This chapter familiarizes you with a class of machine learning algorithms called unsupervised learning and then introduces you to clustering, one of the popular unsupervised learning algorithms. You will know about two popular clustering techniques - hierarchical clustering and k-means clustering. The chapter concludes with basic pre-processing steps before you start clustering data.

    Reproduzir Capítulo Agora
    Unsupervised learning: basics
    50 xp
    Unsupervised learning in real world
    50 xp
    Pokémon sightings
    100 xp
    Basics of cluster analysis
    50 xp
    Pokémon sightings: hierarchical clustering
    100 xp
    Pokémon sightings: k-means clustering
    100 xp
    Data preparation for cluster analysis
    50 xp
    Normalize basic list data
    100 xp
    Visualize normalized data
    100 xp
    Normalization of small numbers
    100 xp
    FIFA 18: Normalize data
    100 xp
  2. 2

    Hierarchical Clustering

    This chapter focuses on a popular clustering algorithm - hierarchical clustering - and its implementation in SciPy. In addition to the procedure to perform hierarchical clustering, it attempts to help you answer an important question - how many clusters are present in your data? The chapter concludes with a discussion on the limitations of hierarchical clustering and discusses considerations while using hierarchical clustering.

    Reproduzir Capítulo Agora
  3. 3

    K-Means Clustering

    This chapter introduces a different clustering algorithm - k-means clustering - and its implementation in SciPy. K-means clustering overcomes the biggest drawback of hierarchical clustering that was discussed in the last chapter. As dendrograms are specific to hierarchical clustering, this chapter discusses one method to find the number of clusters before running k-means clustering. The chapter concludes with a discussion on the limitations of k-means clustering and discusses considerations while using this algorithm.

    Reproduzir Capítulo Agora
  4. 4

    Clustering in Real World

    Now that you are familiar with two of the most popular clustering techniques, this chapter helps you apply this knowledge to real-world problems. The chapter first discusses the process of finding dominant colors in an image, before moving on to the problem discussed in the introduction - clustering of news articles. The chapter concludes with a discussion on clustering with multiple variables, which makes it difficult to visualize all the data.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Cientista de aprendizado de máquina com Python

Ir para a trilha

Conjuntos De Dados

FIFA sampleFIFAMovies

Colaboradores

Collaborator's avatar
Hillary Green-Lerman
Collaborator's avatar
Sara Billen

Pre Requisitos

Intermediate Python
Shaumik Daityari HeadshotShaumik Daityari

Business Analyst at American Express

Veja Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Cluster Analysis in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.