Pular para o conteúdo principal
InícioRCluster Analysis in R

Cluster Analysis in R

Develop a strong intuition for how hierarchical and k-means clustering work and learn how to apply them to extract insights from your data.

Comece O Curso Gratuitamente
4 horas16 vídeos52 exercícios
41.024 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

Learn How to Perform Cluster Analysis

Cluster analysis is a powerful toolkit in the data science workbench. It is used to find groups of observations (clusters) that share similar characteristics. These similarities can inform all kinds of business decisions; for example, in marketing, it is used to identify distinct groups of customers for which advertisements can be tailored.

Explore Hierarchical and K-Means Clustering Techniques

In this course, you will learn about two commonly used clustering methods - hierarchical clustering and k-means clustering. You won't just learn how to use these methods, you'll build a strong intuition for how they work and how to interpret their results. You'll develop this intuition by exploring three different datasets: soccer player positions, wholesale customer spending data, and longitudinal occupational wage data.

Hone Your Skills with a Hands-On Case Study

You’ll finish the course by applying your new skills to a case study based around average salaries and how they have changed over time. This will combine hierarchical clustering techniques such as occupation trees, preparing for exploration, and plotting occupational clusters, with k-means techniques including elbow analysis and average silhouette widths.

DataCamp courses are comprised of a mixture of videos, articles, and practice exercises so that you have the chance to test and cement your new-found skills so that you feel confident applying them outside a course setting.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Cientista de aprendizado de máquina com R

Ir para a trilha
  1. 1

    Calculating Distance Between Observations

    Gratuito

    Cluster analysis seeks to find groups of observations that are similar to one another, but the identified groups are different from each other. This similarity/difference is captured by the metric called distance. In this chapter, you will learn how to calculate the distance between observations for both continuous and categorical features. You will also develop an intuition for how the scales of your features can affect distance.

    Reproduzir Capítulo Agora
    What is cluster analysis?
    50 xp
    When to cluster?
    50 xp
    Distance between two observations
    50 xp
    Calculate & plot the distance between two players
    100 xp
    Using the dist() function
    100 xp
    Who are the closest players?
    50 xp
    The importance of scale
    50 xp
    Effects of scale
    100 xp
    When to scale data?
    50 xp
    Measuring distance for categorical data
    50 xp
    Calculating distance between categorical variables
    100 xp
    The closest observation to a pair
    50 xp
  2. 2

    Hierarchical Clustering

    This chapter will help you answer the last question from chapter 1—how do you find groups of similar observations (clusters) in your data using the distances that you have calculated? You will learn about the fundamental principles of hierarchical clustering - the linkage criteria and the dendrogram plot - and how both are used to build clusters. You will also explore data from a wholesale distributor in order to perform market segmentation of clients using their spending habits.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Cientista de aprendizado de máquina com R

Ir para a trilha

conjuntos de dados

Soccer player positionsOccupational Employment Statistics (OES)Wholesale customer spending

colaboradores

Collaborator's avatar
Yashas Roy
Collaborator's avatar
Richie Cotton

pré-requisitos

Intermediate R
Dmitriy Gorenshteyn HeadshotDmitriy Gorenshteyn

Lead Data Scientist at Memorial Sloan Kettering Cancer Center

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Cluster Analysis in R hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.