Pular para o conteúdo principal
InícioRGARCH Models in R

GARCH Models in R

Specify and fit GARCH models to forecast time-varying volatility and value-at-risk.

Comece O Curso Gratuitamente
4 horas16 vídeos60 exercícios
7.488 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

Are you curious about the rhythm of the financial market's heartbeat? Do you want to know when a stable market becomes turbulent? In this course on GARCH models you will learn the forward looking approach to balancing risk and reward in financial decision making. The course gradually moves from the standard normal GARCH(1,1) model to more advanced volatility models with a leverage effect, GARCH-in-mean specification and the use of the skewed student t distribution for modelling asset returns. Applications on stock and exchange rate returns include portfolio optimization, rolling sample forecast evaluation, value-at-risk forecasting and studying dynamic covariances.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Finanças Aplicadas em R

Ir para a trilha
  1. 1

    The Standard GARCH Model as the Workhorse Model

    Gratuito

    We start off by making our hands dirty. A rolling window analysis of daily stock returns shows that its standard deviation changes massively through time. Looking back at the past, we thus have clear evidence of time-varying volatility. Looking forward, we need to estimate the volatility of future returns. This is essentially what a GARCH model does! In this chapter, you will learn the basics of using the rugarch package for specifying and estimating the workhorse GARCH(1,1) model in R. We end by showing its usefulness in tactical asset allocation.

    Reproduzir Capítulo Agora
    Analyzing volatility
    50 xp
    Computing returns
    100 xp
    Standard deviation on subsamples
    100 xp
    Roll, roll, roll
    100 xp
    The GARCH equation for volatility prediction
    50 xp
    GARCH(1,1) reaction to one-off shocks
    50 xp
    Prediction errors
    100 xp
    The recursive nature of the GARCH variance
    100 xp
    The rugarch package
    50 xp
    Specify and taste the GARCH model flavors
    100 xp
    Out-of-sample forecasting
    100 xp
    Volatility targeting in tactical asset allocation
    100 xp
  2. 2

    Improvements of the Normal GARCH Model

    Markets take the stairs up and the elevator down. This Wallstreet wisdom has important consequences for specifying a realistic volatility model. It requires to give up the assumption of normality, as well as the symmetric response of volatility to shocks. In this chapter, you will learn about GARCH models with a leverage effect and skewed student t innovations. At the end, you will be able to use GARCH models for estimating over ten thousand different GARCH model specifications.

    Reproduzir Capítulo Agora
  3. 3

    Performance Evaluation

    GARCH models yield volatility forecasts which serve as input for financial decision making. Their use in practice requires to first evaluate the goodness of the volatility forecast. In this chapter, you will learn about the analysis of statistical significance of the estimated GARCH parameters, the properties of standardized returns, the interpretation of information criteria and the use of rolling GARCH estimation and mean squared prediction errors to analyze the accuracy of the volatility forecast.

    Reproduzir Capítulo Agora
  4. 4

    Applications

    At this stage, you master the standard specification, estimation and validation of GARCH models in the rugarch package. This chapter introduces specific rugarch functionality for making value-at-risk estimates, for using the GARCH model in production and for simulating GARCH returns. You will also discover that the presence of GARCH dynamics in the variance has implications for simulating log-returns, the estimation of the beta of a stock and finding the minimum variance portfolio.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Finanças Aplicadas em R

Ir para a trilha

conjuntos de dados

Daily EUR/USD returnsDaily Microsoft returnsS&P 500 pricesS&P 500 returnsSimulated return data

colaboradores

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Sara Billen
Collaborator's avatar
Chester Ismay
Kris Boudt HeadshotKris Boudt

Professor of Finance and Econometrics at VUB and VUA

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece GARCH Models in R hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.