Pular para o conteúdo principal
InícioPython

curso

Introdução ao TensorFlow em Python

Intermediário
Actualizado 01/2025
"Aprenda os fundamentos das redes neurais e como criar modelos de deep learning com TensorFlow."
Iniciar curso gratuitamente

Incluído comPremium or Teams

PythonMachine Learning4 horas15 vídeos51 exercícios4,300 XP51,384Certificado de conclusão

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do curso

Obtenha uma introdução ao TensorFlow

Há pouco tempo, os algoritmos de visão computacional mais avançados não conseguiam diferenciar imagens de cães e gatos. Hoje, um cientista de dados habilidoso, equipado com nada mais do que um laptop, pode classificar dezenas de milhares de objetos com maior precisão do que o olho humano.

Neste curso, você usará o TensorFlow 2.6 para desenvolver, treinar e fazer previsões com os modelos que impulsionaram grandes avanços em sistemas de recomendação, classificação de imagens e FinTech.

Use modelos lineares para fazer previsões

Você descobrirá como usar o TensorFlow 2.6 para fazer previsões usando modelos de regressão linear e testará seu conhecimento prevendo os preços das casas em King County. Esta seção do curso inclui uma visão das funções de perda e como você pode reduzir o uso de recursos treinando o modelo linear em lotes.

Treine sua rede neural

Na segunda metade do curso, você usará as mesmas ferramentas para fazer previsões usando redes neurais. Você praticará o treinamento de uma rede no TensorFlow adicionando variáveis treináveis e usando seu modelo e recursos de teste para prever valores-alvo.

Combine o TensorFlow com o Keras API

Adicione o poderoso API do Keras ao seu repertório e aprenda a combiná-lo com o TensorFlow 2.6 para fazer previsões e avaliar modelos. Ao final deste curso, você entenderá como usar o Estimators API para simplificar a definição do modelo e evitar erros.

Pré-requisitos

Supervised Learning with scikit-learn
1

Introdução ao TensorFlow

Iniciar capítulo
2

Modelos lineares

Iniciar capítulo
3

Redes neurais

Iniciar capítulo
4

Alto nível APIs

Iniciar capítulo
Introdução ao TensorFlow em Python
Curso
Completo

Obtenha um certificado de conclusão

Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedIn
Compartilhe nas redes sociais e em sua avaliação de desempenho

Incluído comPremium or Teams

Inscreva-se agora

Junte-se a mais 15 milhões de alunos e comece Introdução ao TensorFlow em Python Hoje!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.