Pular para o conteúdo principal
InícioPythonParallel Programming with Dask in Python

Parallel Programming with Dask in Python

Learn how to use Python parallel programming with Dask to upscale your workflows and efficiently handle big data.

Comece O Curso Gratuitamente
4 horas15 vídeos51 exercícios
3.654 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

Use Parallel Processing to Speed Up Your Python Code

With this 4-hour course, you’ll discover how parallel processing with Dask in Python can make your workflows faster.

When working with big data, you’ll face two common obstacles: using too much memory and long runtimes. The Dask library can lower your memory use by loading chunks of data only when needed. It can lower runtimes by using all your available computing cores in parallel. Best of all, it requires very few changes to your existing Python code.

Analyze Big Structured Data Using Dask DataFrames

In this course, you use Dask to analyze Spotify song data, process images of sign language gestures, calculate trends in weather data, analyze audio recordings, and train machine learning models on big data.

You’ll start by learning the basics of Dask, exploring how parallel processing in Python can speed up almost any code. Next, you’ll explore Dask DataFrames and arrays and how to use them to analyze big structured data.

Train machine learning models using Dask-ML

As you progress through the 51 exercises in this course, you’ll learn how to process any type of data, using Dask bags to work with unstructured and structured data. Finally, you’ll learn how to use Dask in Python to train machine learning models and improve your computing speeds.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.
  1. 1

    Lazy Evaluation and Parallel Computing

    Gratuito

    This chapter will teach you the basics of Dask and lazy evaluation. At the end of this chapter, you'll be able to speed up almost any Python code by using parallel processing or multi-threading. You'll learn the difference between these two task scheduling methods and which one is better under which circumstances.

    Reproduzir Capítulo Agora
    Introduction to Dask
    50 xp
    Lazy evaluation
    50 xp
    Delaying functions
    100 xp
    Task graphs and scheduling methods
    50 xp
    What are the different schedulers?
    100 xp
    Plotting the task graph
    100 xp
    Building delayed pipelines
    50 xp
    Analyzing songs on Spotify
    100 xp
    How danceable are songs these days?
    100 xp
    Most popular songs
    100 xp
  2. 4

    Dask Machine Learning and Final Pieces

    Harness the power of Dask to train machine learning models. You'll learn how to train machine learning models on big data using the Dask-ML package, and how to split Dask calculations across a mixture of processes and threads for even greater computing speed.

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

conjuntos de dados

Spotify Songs - CSVSpotify Songs - ParquetEuropean Rainfall - HDF5European Rainfall - ZarrTripadvisor Hotel ReviewsPoliticians

colaboradores

Collaborator's avatar
Amy Peterson
Collaborator's avatar
James Chapman
James Fulton HeadshotJames Fulton

Climate Informatics Researcher

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Parallel Programming with Dask in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.