Pular para o conteúdo principal
Página inicialPythonPreprocessing for Machine Learning in Python

Preprocessing for Machine Learning in Python

Learn how to clean and prepare your data for machine learning!

Comece O Curso Gratuitamente
4 Horas20 Videos62 Exercicios
45.814 AprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

This course covers the basics of how and when to perform data preprocessing. This essential step in any machine learning project is when you get your data ready for modeling. Between importing and cleaning your data and fitting your machine learning model is when preprocessing comes into play. You'll learn how to standardize your data so that it's in the right form for your model, create new features to best leverage the information in your dataset, and select the best features to improve your model fit. Finally, you'll have some practice preprocessing by getting a dataset on UFO sightings ready for modeling.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Certificação disponível

Cientista de dados em Python

Ir para a trilha

Cientista de aprendizado de máquina com Python

Ir para a trilha
  1. 1

    Introduction to Data Preprocessing

    Grátis

    In this chapter you'll learn exactly what it means to preprocess data. You'll take the first steps in any preprocessing journey, including exploring data types and dealing with missing data.

    Reproduzir Capítulo Agora
    Introduction to preprocessing
    50 xp
    Exploring missing data
    50 xp
    Dropping missing data
    100 xp
    Working with data types
    50 xp
    Exploring data types
    50 xp
    Converting a column type
    100 xp
    Training and test sets
    50 xp
    Class imbalance
    50 xp
    Stratified sampling
    100 xp
  2. 2

    Standardizing Data

    This chapter is all about standardizing data. Often a model will make some assumptions about the distribution or scale of your features. Standardization is a way to make your data fit these assumptions and improve the algorithm's performance.

    Reproduzir Capítulo Agora
  3. 4

    Selecting Features for Modeling

    This chapter goes over a few different techniques for selecting the most important features from your dataset. You'll learn how to drop redundant features, work with text vectors, and reduce the number of features in your dataset using principal component analysis (PCA).

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Certificação disponível

Cientista de dados em Python

Ir para a trilha

Cientista de aprendizado de máquina com Python

Ir para a trilha

Conjuntos De Dados

Hiking dataWine dataUFO sightings dataVolunteering data

Colaboradores

Collaborator's avatar
Nick Solomon
Collaborator's avatar
Kara Woo
James Chapman HeadshotJames Chapman

Curriculum Manager, DataCamp

Veja Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Preprocessing for Machine Learning in Python hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.