Skip to main content

A Practical Guide to MLOps



Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This webinar takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models.

Current and aspiring machine learning engineers — or anyone familiar with data science and Python — will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This training gives you a head start.

Key Takeaways:

  • What MLOps is, the motivation behind it, and why it’s the next frontier in applied machine learning

  • Learn how to harness cloud technologies like AWS AppRunner to deploy and monitor machine learning models in production

  • Summary of use cases and challenges in MLOps, and how to begin the MLOps journey in your organization

Noah Gift Headshot
Noah Gift

View More Webinars

Recommended Content

Operationalizing Machine Learning with MLOps (with Alessya Visnjic)

How to build the interface between AI and human operators.


Operationalizing Data Within Large Organizations

Demystify the unique challenges to making large organizations data-driven.


Driving Data Literacy: Technology

Learn how DataCamp is sustaining a data-driven culture in companies such as Uber

Data Sheets

Hands-on learning experience

Companies using DataCamp achieve course completion rates 6X higher than traditional online course providers

Learn More

Upskill your teams in data science and analytics

Learn More

Join 2,500+ companies and 80% of the Fortune 1000 who use DataCamp to upskill their teams.

Don’t just take our word for it.