# Beginning Bayes in R

This course provides a basic introduction to Bayesian statistics in R.
4 Hours17 Videos56 Exercises8,827 Learners
4250 XP

or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

## Course Description

There are two schools of thought in the world of statistics, the frequentist perspective and the Bayesian perspective. At the core of the Bayesian perspective is the idea of representing your beliefs about something using the language of probability, collecting some data, then updating your beliefs based on the evidence contained in the data. This provides a convenient way of implementing the scientific method for learning about the world we live in. Bayesian statistics is increasingly popular due to recent improvements in computation, the ability to fit a wide range of models, and to produce intuitive interpretations of the results.

1. 1

### Introduction to Bayesian thinking

Free
This chapter introduces the idea of discrete probability models and Bayesian learning. You'll express your opinion about plausible models by defining a prior probability distribution, you'll observe new information, and then, you'll update your opinion about the models by applying Bayes' theorem.
2. 2

### Learning about a binomial probability

This chapter describes learning about a population proportion using discrete and continuous models. You'll use a beta curve to represent prior opinion about the proportion, take a sample and observe the number of successes and failures, and construct a beta posterior curve that combines both the information in the prior and in the sample. You'll then use the beta posterior curve to draw inferences about the population proportion.
3. 3

### Learning about a normal mean

This chapter introduces Bayesian learning about a population mean. You'll sample from a normal population with an unknown mean and a known standard deviation, construct a normal prior to reflect your opinion about the location of the mean before sampling, and see that the posterior distribution also has a normal form with updated values of the mean and standard deviation. You'll also get more practice drawing inferences from the posterior distribution, only this time, about a population mean.
4. 4

### Bayesian comparisons

Suppose you're interested in comparing proportions from two populations. You take a random sample from each population and you want to learn about the difference in proportions. This chapter will illustrate the use of discrete and continuous priors to do this kind of inference. You'll use a Bayesian regression approach to learn about a mean or the difference in means when the sampling standard deviation is unknown.
Collaborators Nick Carchedi Tom Jeon
Prerequisites
Introduction to RFoundations of Probability in R #### Jim Albert

Professor, Bowling Green State University
Jim is Professor of Statistics at Bowling Green State University. His interests include Bayesian thinking, statistics education, statistical computation, and applications of statistics to sports. He is former editor of the Journal of Quantitative Analysis of Sports.

## What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden