Saltar al contenido principal
InicioPythonEnsemble Methods in Python

Ensemble Methods in Python

Learn how to build advanced and effective machine learning models in Python using ensemble techniques such as bagging, boosting, and stacking.

Comience El Curso Gratis
4 Horas15 Videos52 Ejercicios
8960 AprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group¿Entrenar a 2 o más personas?Pruebe DataCamp para empresas

Preferido por estudiantes en miles de empresas


Descripción del curso

Continue your machine learning journey by diving into the wonderful world of ensemble learning methods! These are an exciting class of machine learning techniques that combine multiple individual algorithms to boost performance and solve complex problems at scale across different industries. Ensemble techniques regularly win online machine learning competitions as well! In this course, you’ll learn all about these advanced ensemble techniques, such as bagging, boosting, and stacking. You’ll apply them to real-world datasets using cutting edge Python machine learning libraries such as scikit-learn, XGBoost, CatBoost, and mlxtend.
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más
Pruebe DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.

En las siguientes pistas

Aprendizaje automático supervisado en Python

Ir a la pista
  1. 1

    Combining Multiple Models

    Gratuito

    Do you struggle to determine which of the models you built is the best for your problem? You should give up on that, and use them all instead! In this chapter, you'll learn how to combine multiple models into one using "Voting" and "Averaging". You'll use these to predict the ratings of apps on the Google Play Store, whether or not a Pokémon is legendary, and which characters are going to die in Game of Thrones!

    Reproducir Capítulo Ahora
    Introduction to ensemble methods
    50 xp
    Exploring Google apps data
    50 xp
    Predicting the rating of an app
    100 xp
    Voting
    50 xp
    Choosing the best model
    100 xp
    Assembling your first ensemble
    100 xp
    Evaluating your ensemble
    100 xp
    Averaging
    50 xp
    Journey to Westeros
    50 xp
    Predicting GoT deaths
    100 xp
    Soft vs. hard voting
    100 xp
  2. 4

    Stacking

    Get ready to see how things stack up! In this final chapter you'll learn about the stacking ensemble method. You'll learn how to implement it using scikit-learn as well as with the mlxtend library! You'll apply stacking to predict the edibility of North American mushrooms, and revisit the ratings of Google apps with this more advanced approach.

    Reproducir Capítulo Ahora
Empresas

Group¿Entrenar a 2 o más personas?

Obtenga acceso de su equipo a la biblioteca completa de DataCamp, con informes centralizados, tareas, proyectos y más

En las siguientes pistas

Aprendizaje automático supervisado en Python

Ir a la pista

Sets De Datos

App ratingsApp reviewsGame of ThronesPokémonSECOM (Semiconductor Manufacturing)TMDb (The Movie Database)

Colaboradores

Collaborator's avatar
Hillary Green-Lerman
Collaborator's avatar
Yashas Roy
Román de las Heras HeadshotRomán de las Heras

Senior Data Scientist at Chartboost

Ver Mas

¿Qué tienen que decir otros alumnos?

¡Únete a 14 millones de estudiantes y empieza Ensemble Methods in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.