Saltar al contenido principal
InicioPython

Practicing Coding Interview Questions in Python

Prepare for your next coding interviews in Python.

Comienza El Curso Gratis
4 horas16 vídeos61 ejercicios24.493 aprendicesTrophyDeclaración de cumplimiento

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas


Descripción del curso

Coding interviews can be challenging. You might be asked questions to test your knowledge of a programming language. On the other side, you can be given a task to solve in order to check how you think. And when you are interviewed for a data scientist position, it's likely you can be asked on the corresponding tools available for the language. In either of the cases, to get a cool position as a data scientist, you need to do a little work to perform the best. That's why it's very important to practice in order to prove your expertise! This course serves as a guide for those who just start their path to become a professional data scientist and as a refresher for those who seek for other opportunities. We'll go through fundamental as well as advanced topics that aim to prepare you for a coding interview in Python. Since it is not a normal step-by-step course, some exercises can be quite complex. But who said that interviews are easy to pass, right?
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.
DataCamp Para EmpresasPara obtener una solución a medida, reserve una demostración.
  1. 1

    Python Data Structures and String Manipulation

    Gratuito

    In this chapter, we'll refresh our knowledge of the main data structures used in Python. We'll cover how to deal with lists, tuples, sets, and dictionaries. We'll also consider strings and how to write regular expressions to retrieve specific character sequences from a given text.

    Reproducir Capítulo Ahora
    What are the main data structures in Python?
    50 xp
    List methods
    100 xp
    Operations on sets
    50 xp
    Storing data in a dictionary
    100 xp
    What are common ways to manipulate strings?
    50 xp
    String indexing and concatenation
    100 xp
    Operations on strings
    100 xp
    Fixing string errors in a DataFrame
    100 xp
    How to write regular expressions in Python?
    50 xp
    Write a regular expression
    100 xp
    Find the correct pattern
    50 xp
    Splitting by a pattern
    100 xp
  2. 2

    Iterable objects and representatives

    This chapter focuses on iterable objects. We'll refresh the definition of iterable objects and explain, how to identify one. Next, we'll cover list comprehensions, which is a very special feature of Python programming language to define lists. Then, we'll recall how to combine several iterable objects into one. Finally, we'll cover how to create custom iterable objects using generators.

    Reproducir Capítulo Ahora
  3. 3

    Functions and lambda expressions

    This chapter will focus on the functional aspects of Python. We'll start by defining functions with a variable amount of positional as well as keyword arguments. Next, we'll cover lambda functions and in which cases they can be helpful. Especially, we'll see how to use them with such functions as map(), filter(), and reduce(). Finally, we'll recall what is recursion and how to correctly implement one.

    Reproducir Capítulo Ahora
  4. 4

    Python for scientific computing

    This chapter will cover topics on scientific computing in Python. We'll start by explaining the difference between NumPy arrays and lists. We'll define why the former ones suit better for complex calculations. Next, we'll cover some useful techniques to manipulate with pandas DataFrames. Finally, we'll do some data visualization using scatterplots, histograms, and boxplots.

    Reproducir Capítulo Ahora
Empresas

¿Entrenar a 2 o más personas?

Obtén a tu equipo acceso a la plataforma DataCamp completa, incluidas todas las funciones.

conjuntos de datos

DiabetesExamsHeroesRetinol

colaboradores

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Hillary Green-Lerman
Kirill Smirnov HeadshotKirill Smirnov

Data Science Consultant @ Altran

Ver Más

¿Qué tienen que decir otros alumnos?

¡Únete a 15 millones de estudiantes y empieza Practicing Coding Interview Questions in Python hoy mismo!

Crea Tu Cuenta Gratuita

GoogleLinkedInFacebook

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.