Saltar al contenido principal
InicioPython

curso

Practicing Machine Learning Interview Questions in Python

Avanzado
Actualizado 2/2025
Sharpen your knowledge and prepare for your next interview by practicing Python machine learning interview questions.
Comienza el curso gratis

Incluido conPremium or Teams

PythonMachine Learning4 horas16 vídeos60 ejercicios4,600 XP10,355Certificado de logros

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.
Group

¿Entrenar a 2 o más personas?

Probar DataCamp for Business

Preferido por estudiantes en miles de empresas

Descripción del curso

Prepare for Your Machine Learning Interview

Have you ever wondered how to properly prepare for a Machine Learning Interview? In this course, you will prepare answers for 15 common Machine Learning (ML) in Python interview questions for a data scientist role.

These questions will revolve around seven important topics: data preprocessing, data visualization, supervised learning, unsupervised learning, model ensembling, model selection, and model evaluation.

Refresh Your Machine Learning Knowledge

You’ll start by working on data pre-processing and data visualization questions. After performing all the preprocessing steps, you’ll create a predictive ML model to hone your practical skills.

Next, you’ll cover some supervised learning techniques before moving on to unsupervised learning. Depending on the role, you’ll likely cover both topics in your machine learning interview.

Finally, you’ll finish by covering model selection and evaluation, looking at how to evaluate performance for model generalization, and look at various techniques as you build an ensemble model.

Practice Answers to the Most Common Machine Learning Interview Questions

By the end of the course, you will possess both the required theoretical background and the ability to develop Python code to successfully answer these 15 questions.

The coding examples will be mainly based on the scikit-learn package, given its ease of use and ability to cover the most important machine learning techniques in the Python language.

The course does not teach machine learning fundamentals, as these are covered in the course's prerequisites.

Prerrequisitos

Unsupervised Learning in PythonSupervised Learning with scikit-learn
1

Data Pre-processing and Visualization

Iniciar capítulo
2

Supervised Learning

Iniciar capítulo
3

Unsupervised Learning

Iniciar capítulo
4

Model Selection and Evaluation

Iniciar capítulo
Practicing Machine Learning Interview Questions in Python
Curso
Completo

Obtener certificado de logros

Añade esta credencial a tu perfil, currículum vitae o CV de LinkedIn
Compártelo en las redes sociales y en tu evaluación de desempeño

Incluido conPremium or Teams

Inscríbete ahora

Únete a más 15 millones de estudiantes y empezar Practicing Machine Learning Interview Questions in Python hoy

Crea Tu Cuenta Gratuita

o

Al continuar, acepta nuestros Términos de uso, nuestra Política de privacidad y que sus datos se almacenan en los EE. UU.