Customer Analytics and A/B Testing in Python
Learn how to use Python to create, run, and analyze A/B tests to make proactive business decisions.
Comece O Curso Gratuitamente4 horas16 vídeos49 exercícios31.253 aprendizesDeclaração de Realização
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do Curso
The most successful companies today are the ones that know their customers so well that they can anticipate their needs.
Customer analytics and in particular A/B Testing are crucial parts of
leveraging quantitative know-how to help make business decisions that generate value. This course
covers the ins and outs of how to use Python to
analyze customer behavior and business trends as well as how to create, run,
and analyze A/B tests to make proactive, data-driven business decisions.
Para Empresas
Treinar 2 ou mais pessoas?
Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizadosNas seguintes faixas
Análise de marketing em Python
Ir para a trilha- 1
Key Performance Indicators: Measuring Business Success
GratuitoThis chapter provides a brief introduction to the content that will be covered throughout the course before transitioning into a discussion of Key Performance Indicators or KPIs. You'll learn how to identify and define meaningful KPIs through a combination of critical thinking and leveraging Python tools. These techniques are all presented in a highly practical and generalizable way. Ultimately these topics serve as the core foundation for the A/B testing discussion that follows.
Course introduction and overview50 xpUnderstanding the key components of an A/B test50 xpDefining meaningful KPIs50 xpIdentifying and understanding KPIs50 xpLoading & examining our data100 xpMerging on different sets of fields100 xpExploratory analysis of KPIs50 xpPracticing aggregations100 xpGrouping & aggregating100 xpCalculating KPIs - a practical example50 xpCalculating KPIs100 xpAverage purchase price by cohort100 xp - 2
Exploring and Visualizing Customer Behavior
This chapter teaches you how to visualize, manipulate, and explore KPIs as they change over time. Through a variety of examples, you'll learn how to work with datetime objects to calculate metrics per unit time. Then we move to the techniques for how to graph different segments of data, and apply various smoothing functions to reveal hidden trends. Finally we walk through a complete example of how to pinpoint issues through exploratory data analysis of customer data. Throughout this chapter various functions are introduced and explained in a highly generalizable way.
Working with time series data in pandas50 xpParsing dates100 xpCreating time series graphs with Matplotlib50 xpPlotting time series data100 xpPivoting our data100 xpExamining the different cohorts100 xpUnderstanding and visualizing trends50 xpSeasonality and moving averages100 xpExponential rolling average & over/under smoothing100 xpEvents and releases50 xpVisualizing user spending100 xpLooking more closely at revenue50 xp - 3
The Design and Application of A/B Testing
In this chapter you will dive fully into A/B testing. You will learn the mathematics and knowledge needed to design and successfully plan an A/B test from determining an experimental unit to finding how large a sample size is needed. Accompanying this will be an introduction to the functions and code needed to calculate the various quantities associated with a statistical test of this type.
Introduction to A/B testing50 xpGood applications of A/B testing50 xpGeneral properties of an A/B Test50 xpA/B test generalizability50 xpInitial A/B test design50 xpExperimental units: Revenue per user day100 xpPreparing to run an A/B test50 xpConversion rate sensitivities100 xpSensitivity100 xpStandard error100 xpCalculating sample size50 xpExploring the power calculation100 xpCalculating the sample size100 xp - 4
Analyzing A/B Testing Results
After running an A/B test, you must analyze the data and then effectively communicate the results. This chapter begins by interleaving the theory of statistical significance and confidence intervals with the tools you need to calculate them yourself from the data. Next we discuss how to effectively visualize and communicate these results. This chapter is the culmination of all the knowledge built over the entire course.
Analyzing the A/B test results50 xpConfirming our test results100 xpThinking critically about p-values50 xpUnderstanding statistical significance50 xpIntuition behind statistical significance100 xpChecking for statistical significance100 xpUnderstanding confidence intervals100 xpCalculating confidence intervals100 xpInterpreting your test results50 xpPlotting the distribution100 xpPlotting the difference distribution100 xpFinale50 xp
Para Empresas
Treinar 2 ou mais pessoas?
Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizadosNas seguintes faixas
Análise de marketing em Python
Ir para a trilhaconjuntos de dados
Customer datasetIn-App Purchases datasetDaily Revenue datasetUser Demographics Paywall datasetAB Testing Resultscolaboradores
Ryan Grossman
Ver MaisData Scientist at EDO Inc.
O que os outros alunos têm a dizer?
Junte-se a mais de 14 milhões de alunos e comece Customer Analytics and A/B Testing in Python hoje mesmo!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.