Learn statistical tests for identifying outliers and how to use sophisticated anomaly scoring algorithms.
By pressing Continue you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.
Are you concerned about inaccurate or suspicious records in your data, but not sure where to start? An anomaly detection algorithm could help! Anomaly detection is a collection of techniques designed to identify unusual data points, and are crucial for detecting fraud and for protecting computer networks from malicious activity. In this course, you'll explore statistical tests for identifying outliers, and learn to use sophisticated anomaly scoring algorithms like the local outlier factor and isolation forest. You'll apply anomaly detection algorithms to identify unusual wines in the UCI Wine quality dataset and also to detect cases of thyroid disease from abnormal hormone measurements.
In this chapter, you'll learn how numerical and graphical summaries can be used to informally assess whether data contain unusual points. You'll use a statistical procedure called Grubbs' test to check whether a point is an outlier, and learn about the Seasonal-Hybrid ESD algorithm, which can help identify outliers when the data are a time series.
k-nearest neighbors distance and local outlier factor use the distance or relative density of the nearest neighbors to score each point. In this chapter, you'll explore an alternative tree-based approach called an isolation forest, which is a fast and robust method of detecting anomalies that measures how easily points can be separated by randomly splitting the data into smaller and smaller regions.
In this chapter, you'll learn how to calculate the k-nearest neighbors distance and the local outlier factor, which are used to construct continuous anomaly scores for each data point when the data have multiple features. You'll learn the difference between local and global anomalies and how the two algorithms can help in each case.
You've now been introduced to a few different algorithms for anomaly scoring. In this final chapter, you'll learn to compare the detection performance of the algorithms in instances where labeled anomalies are available. You'll learn to calculate and interpret the precision and recall statistics for an anomaly score, and how to adapt the algorithms so they can accommodate data with categorical features.
In this chapter, you'll learn how numerical and graphical summaries can be used to informally assess whether data contain unusual points. You'll use a statistical procedure called Grubbs' test to check whether a point is an outlier, and learn about the Seasonal-Hybrid ESD algorithm, which can help identify outliers when the data are a time series.
In this chapter, you'll learn how to calculate the k-nearest neighbors distance and the local outlier factor, which are used to construct continuous anomaly scores for each data point when the data have multiple features. You'll learn the difference between local and global anomalies and how the two algorithms can help in each case.
k-nearest neighbors distance and local outlier factor use the distance or relative density of the nearest neighbors to score each point. In this chapter, you'll explore an alternative tree-based approach called an isolation forest, which is a fast and robust method of detecting anomalies that measures how easily points can be separated by randomly splitting the data into smaller and smaller regions.
You've now been introduced to a few different algorithms for anomaly scoring. In this final chapter, you'll learn to compare the detection performance of the algorithms in instances where labeled anomalies are available. You'll learn to calculate and interpret the precision and recall statistics for an anomaly score, and how to adapt the algorithms so they can accommodate data with categorical features.
“I've used other sites, but DataCamp's been the one that I've stuck with.”
Devon Edwards Joseph
Lloyd's Banking Group
“DataCamp is the top resource I recommend for learning data science.”
Louis Maiden
Harvard Business School
“DataCamp is by far my favorite website to learn from.”
Ronald Bowers
Decision Science Analytics @ USAA