Skip to main content

Error and Uncertainty in Spreadsheets

Learn to distinguish real differences from random noise, and explore psychological crutches we use that interfere with our rational decision making.

Start Course for Free
4 Hours16 Videos62 Exercises4,521 Learners5000 XPIntermediate Spreadsheets Track

Create Your Free Account



By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies

Course Description

You rely on predictions every day: you might check the weather app before choosing your outfit or peek at the traffic before starting your commute. Perhaps you are responsible for setting your organization’s strategy in the future. Do you find yourself wondering how accurate predictions are, how you can see into the future, and why the weatherman always seems to be wrong? In our Error and Uncertainty course, you’ll make some predictions yourself, learn to distinguish real differences from random noise, and explore psychological crutches we use that interfere with our rational decision making. You will uncover patterns in Seattle crime data, predict students’ final grades, prevent Nashville traffic accidents, and determine whether a bakery’s menu needs to change. Join us! We’re certain you’ll enjoy learning about error and uncertainty.

  1. 1

    Defining error, uncertainty, and risk


    The first chapter presents common terminology, introduces methods for determining significant differences between groups, and outlines the kinds of error and uncertainty involved. We will specifically look at Seattle crime data and evaluate crime rate differences between precincts and neighborhoods. This chapter will equip learners to identify threats to the validity and accuracy of their conclusions.

    Play Chapter Now
    Defining error and uncertainty
    50 xp
    Measures of central tendency
    100 xp
    Crime time
    100 xp
    IF functions
    50 xp
    Extracting UNIQUE() values
    100 xp
    Book 'em and count 'em
    100 xp
    Averages and IF conditions
    100 xp
    Counts with multiple criteria
    100 xp
    50 xp
    Rap sheet
    100 xp
    Correlation preparation
    100 xp
    A (crimes) committed relationship
    100 xp
    Strong relationships
    50 xp
  2. 2

    Making accurate predictions

    The second chapter outlines both rudimentary (e.g., moving average, seasonal average, yearly average) and more complicated methods (e.g., linear regression) for making predictions and outlines the kinds of error and uncertainty involved. We will specifically look at anonymized student grades data and evaluate the accuracy of our predictions for given students. Throughout the chapter, we will identify threats to the validity and accuracy of our predictions.

    Play Chapter Now
  3. 3

    Poking holes in predictions

    Chapter 3 encourages learners to test the assumptions of their predictions using data on car crashes. Specifically, they will determine how to allocate resources to reduce injuries and fatalities from auto accidents. Learners will discuss the impact of outliers in prediction accuracy, evaluate the importance of normally distributed data in making predictions, employ consequence-likelihood matrices in risk management, and adapt psychological heuristics to discussions of numerical uncertainty and risk.

    Play Chapter Now
  4. 4

    Case study: Should you change your bakery's menu?

    The final chapter integrates all the previous lessons into a constructed-world scenario. Learners are tasked with updating the menu at their small business: the Risky Business Bakery. They need to figure out whether to add or drop menu items based on whether there are significant differences in sales by baked good; whether their predicted sales figures from their accountant are accurate.

    Play Chapter Now

In the following tracks

Intermediate Spreadsheets


ruannevdwaltRuanne Van Der WaltchesterChester IsmaybeccarobinsBecca Robins
Evan Kramer Headshot

Evan Kramer

Data Scientist

My team evaluates public school performance in DC. We analyze and report on what works to inform policy makers and education leaders. Formerly I worked in wilderness education and wilderness therapy before becoming a teacher and administrator at various schools.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA