Skip to main content

Introduction to TensorFlow in R

Learn how to use TensorFlow, a state-of-the-art machine learning framework that specializes in the ability to develop deep learning neural networks.

Start Course for Free
4 Hours15 Videos51 Exercises3,865 Learners4150 XP

Create Your Free Account



By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies

Course Description

TensorFlow is a state-of-the-art machine learning framework that specializes in the ability to develop deep learning neural networks. And now, it's available in R! This course will walk you through the basics of using TensorFlow in R. From simple linear regressions to more complex deep learning neural networks (which perform extremely well with BIG datasets) , you'll be introduced to both the basics of TensorFlow and higher-level APIs such as Keras and TFEstimators. We'll put your new-found skills to the test by exploring whether there is a predictable relationship between beer consumption and weather, and find out if we can accurately build a deep neural network to help predict whether a banknote is forged or genuine based on image data.

  1. 1

    Introducing TensorFlow in R


    Let's get you started in TensorFlow! To begin the course, you'll learn the history of the program and will become comfortable using TensorFlow syntax. You'll become versed in TensorFlow constants, placeholders, and Variables and we'll explore some dataflow diagrams using TensorBoard, the TensorFlow visualization tool! This chapter is a great start to get you comfortable with using TensorFlow in R.

    Play Chapter Now
    What is TensorFlow?
    50 xp
    Translating a dataflow graph
    50 xp
    Starting with sessions
    100 xp
    TensorFlow syntax, variables, and placeholders
    50 xp
    Variables, constants, and placeholders, oh my!
    50 xp
    Create tensors yourself
    100 xp
    TensorBoard: visualizing TensorFlow models
    50 xp
    Creating a single-step TensorBoard
    100 xp
    Creating a multi-step TensorBoard
    100 xp
    Sessions, constants, and variables in TensorFlow
    100 xp
  2. 2

    Linear Regression using two TensorFlow APIs

    Have you ever wondered if we can predict beer consumption in university towns based on weather factors, such as temperature, precipitation, or time of week? Well then do I have a chapter for you! In this chapter, we'll explore linear regression models using both the Core TensorFlow API, as well as the Estimators API (a high-level API with canned models set to speed up the user experience). We'll train and evaluate several models to get you familiar with all the APIs TensorFlow has to offer. And you'll finally be able to answer - do people drink less beer when it's rainy out?

    Play Chapter Now
  3. 3

    Deep Learning in TensorFlow: Creating a Deep Neural Network

    Let’s dive into some deep learning with TensorFlow! In this chapter, you’ll create a complete end-to-end DNN Classifier with the Keras API, exploring if you can predict online customer buy/don’t buy behaviour. Want to see behind-the-scenes of your classifier? TensorBoard is your answer. You’ll explore scalars and graphs in TensorBoard and take a closer look at the visualizations directly available in R. Finish off the chapter with a glimpse into using a canned DNN Classifier in Estimators. Which is the better API for your model? You decide!

    Play Chapter Now
  4. 4

    Deep learning in TensorFlow: increasing model accuracy

    Now that you've successfully created your first DNN models using TensorFlow in R, it's time to branch out and look at some ways to increase the accuracy of your models. In this chapter, you'll explore a few regularization techniques, including incorporating a Ridge Regression into a Keras model and adding a Dropout technique to an Estimators canned DNN. Finally, we'll wrap up this course by summarizing all the concepts you've learned, and give you some research ideas for you to try on your own!

    Play Chapter Now


Banknote AuthenticationStudent Grades


maggiematsuiMaggie Matsuimona-kayMona Khalil
Colleen Bobbie Headshot

Colleen Bobbie


I have developed my passion for R , machine learning, and teaching over the course of my career as a Data Analyst in the Biology, Business, and Mining sectors and as a side-gig college lecturer. I enjoy making sense of real-world problems through the use of data-driven solutions and live for the 'eureka' moment that comes after a large coding challenge. With a new project always just around the corner, I look forward to teaching people about the power of statistics (and how to use them wisely)!
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA