# Manipulating Time Series Data in Python

In this course you'll learn the basics of working with time series data.
4 Hours16 Videos55 Exercises30,091 Learners
4700 XP

or
By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

## Course Description

In this course you'll learn the basics of manipulating time series data. Time series data are data that are indexed by a sequence of dates or times. You'll learn how to use methods built into Pandas to work with this index. You'll also learn how resample time series to change the frequency. This course will also show you how to calculate rolling and cumulative values for times series. Finally, you'll use all your new skills to build a value-weighted stock index from actual stock data.

1. 1

### Working with Time Series in Pandas

Free
This chapter lays the foundations to leverage the powerful time series functionality made available by how Pandas represents dates, in particular by the DateTimeIndex. You will learn how to create and manipulate date information and time series, and how to do calculations with time-aware DataFrames to shift your data in time or create period-specific returns.
2. 2

### Basic Time Series Metrics & Resampling

This chapter dives deeper into the essential time series functionality made available through the pandas DataTimeIndex. It introduces resampling and how to compare different time series by normalizing their start points.
3. 3

### Window Functions: Rolling & Expanding Metrics

This chapter will show you how to use window function to calculate time series metrics for both rolling and expanding windows.
4. 4

### Putting it all together: Building a value-weighted index

This chapter combines the previous concepts by teaching you how to create a value-weighted index. This index uses market-cap data contained in the stock exchange listings to calculate weights and 2016 stock price information. Index performance is then compared against benchmarks to evaluate the performance of the index you created.
In the following tracks
Finance FundamentalsTime Series
Collaborators
Lore DirickNick Solomon

#### Stefan Jansen

Founder & Lead Data Scientist at Applied Artificial Intelligence
Stefan is the Founder & Lead Data Scientist at Applied Artificial Intelligence. He has 15 years of experience in finance and investments, with a big focus on emerging markets.

## What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden