Support Vector Machines in R

This course will introduce the support vector machine (SVM) using an intuitive, visual approach.
Start Course for Free
4 Hours13 Videos47 Exercises5,598 Learners
3950 XP

Create Your Free Account

GoogleLinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

Loved by learners at thousands of companies


Course Description

This course will introduce a powerful classifier, the support vector machine (SVM) using an intuitive, visual approach. Support Vector Machines in R will help students develop an understanding of the SVM model as a classifier and gain practical experience using R’s libsvm implementation from the e1071 package. Along the way, students will gain an intuitive understanding of important concepts, such as hard and soft margins, the kernel trick, different types of kernels, and how to tune SVM parameters. Get ready to classify data with this impressive model.

  1. 1

    Introduction

    Free
    This chapter introduces some key concepts of support vector machines through a simple 1-dimensional example. Students are also walked through the creation of a linearly separable dataset that is used in the subsequent chapter.
    Play Chapter Now
  2. 2

    Support Vector Classifiers - Linear Kernels

    Introduces students to the basic concepts of support vector machines by applying the svm algorithm to a dataset that is linearly separable. Key concepts are illustrated through ggplot visualisations that are built from the outputs of the algorithm and the role of the cost parameter is highlighted via a simple example. The chapter closes with a section on how the algorithm deals with multiclass problems.
    Play Chapter Now
  3. 3

    Polynomial Kernels

    Provides an introduction to polynomial kernels via a dataset that is radially separable (i.e. has a circular decision boundary). After demonstrating the inadequacy of linear kernels for this dataset, students will see how a simple transformation renders the problem linearly separable thus motivating an intuitive discussion of the kernel trick. Students will then apply the polynomial kernel to the dataset and tune the resulting classifier.
    Play Chapter Now
  4. 4

    Radial Basis Function Kernels

    Builds on the previous three chapters by introducing the highly flexible Radial Basis Function (RBF) kernel. Students will create a "complex" dataset that shows up the limitations of polynomial kernels. Then, following an intuitive motivation for the RBF kernel, students see how it addresses the shortcomings of the other kernels discussed in this course.
    Play Chapter Now
In the following tracks
Machine Learning ScientistSupervised Machine Learning
Collaborators
Chester IsmayBecca Robins
Prerequisites
Introduction to R
Kailash Awati Headshot

Kailash Awati

Senior Lecturer at University of Technology Sydney.
Kailash Awati is co-founder and principal of Sensanalytics, a consultancy specializing in sensemaking and analytics. He is also on the academic staff at the University of Technology Sydney where he teaches into the Master of Data Science and Innovation program. He blogs about analytics, sensemaking and his other professional interests at Eight to Late.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA

Join over 7 million learners and start Support Vector Machines in R today!

Create Your Free Account

GoogleLinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.