Pular para o conteúdo principal
InícioRInference for Linear Regression in R

Inference for Linear Regression in R

In this course you'll learn how to perform inference using linear models.

Comece O Curso Gratuitamente
4 Horas15 Videos59 Exercicios
13.766 AprendizesDeclaração de Realização

Crie sua conta gratuita

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Treinar 2 ou mais pessoas?Experimente o DataCamp For Business

Descrição do Curso

Previously, you learned the fundamentals of both statistical inference and linear models; now, the next step is to put them together. This course gives you a chance to think about how different samples can produce different linear models, where your goal is to understand the underlying population model. From the estimated linear model, you will learn how to create interval estimates for the effect size as well as how to determine if the effect is significant. Prediction intervals for the response variable will be contrasted with estimates of the average response. Throughout the course, you'll gain more practice with the dplyr and ggplot2 packages, and you will learn about the broom package for tidying models; all three packages are invaluable in data science.
Para Empresas

.css-1goj2uy{margin-right:8px;}Group.css-gnv7tt{font-size:20px;font-weight:700;white-space:nowrap;}.css-12nwtlk{box-sizing:border-box;margin:0;min-width:0;color:#05192D;font-size:16px;line-height:1.5;font-size:20px;font-weight:700;white-space:nowrap;}Treinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Ir para a trilha
1. 1

Inferential ideas

Gratuito

In the first chapter, you will understand how and why to perform inferential (instead of descriptive only) analysis on a regression model.

Reproduzir Capítulo Agora
Variability in regression lines
50 xp
Regression output: example I
100 xp
First random sample, second random sample
100 xp
Superimpose lines
100 xp
Research question
50 xp
Regression hypothesis
50 xp
Variability of coefficients
50 xp
Original population - change sample size
100 xp
Hypothetical population - less variability around the line
100 xp
Hypothetical population - less variability in x direction
100 xp
What changes the variability of the coefficients?
50 xp
2. 2

Simulation-based inference for the slope parameter

In this chapter you will learn about the ideas of the sampling distribution using simulation methods for regression models.

3. 3

t-Based Inference For the Slope Parameter

In this chapter you will learn about how to use the t-distribution to perform inference in linear regression models. You will also learn about how to create prediction intervals for the response variable.

4. 4

Technical Conditions in linear regression

Additionally, you will consider the technical conditions that are important when using linear models to make claims about a larger population.

5. 5

Building on Inference in Simple Linear Regression

This chapter covers topics that build on the basic ideas of inference in linear models, including multicollinearity and inference for multiple regression models.

Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Inferência estatística com R

Ir para a trilha

LA home price dataNYC restaurant dataTwin data

Jo Hardin

Professor at Pomona College

Ver Mais