Skip to main content

Advanced NLP with spaCy

Learn how to use spaCy to build advanced natural language understanding systems, using both rule-based and machine learning approaches.

Start Course for Free
5 Hours15 Videos55 Exercises13,545 Learners
4450 XP

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies


Course Description

If you're working with a lot of text, you'll eventually want to know more about it. For example, what's it about? What do the words mean in context? Who is doing what to whom? What companies and products are mentioned? Which texts are similar to each other? In this course, you'll learn how to use spaCy, a fast-growing industry standard library for NLP in Python, to build advanced natural language understanding systems, using both rule-based and machine learning approaches.

  1. 1

    Finding words, phrases, names and concepts

    Free

    This chapter will introduce you to the basics of text processing with spaCy. You'll learn about the data structures, how to work with statistical models, and how to use them to predict linguistic features in your text.

    Play Chapter Now
    Introduction to spaCy
    50 xp
    Getting Started
    100 xp
    Documents, spans and tokens
    100 xp
    Lexical attributes
    100 xp
    Statistical models
    50 xp
    Model packages
    50 xp
    Loading models
    100 xp
    Predicting linguistic annotations
    100 xp
    Predicting named entities in context
    100 xp
    Rule-based matching
    50 xp
    Using the Matcher
    100 xp
    Writing match patterns
    100 xp
  2. 3

    Processing Pipelines

    This chapter will show you to everything you need to know about spaCy's processing pipeline. You'll learn what goes on under the hood when you process a text, how to write your own components and add them to the pipeline, and how to use custom attributes to add your own meta data to the documents, spans and tokens.

    Play Chapter Now
  3. 4

    Training a neural network model

    In this chapter, you'll learn how to update spaCy's statistical models to customize them for your use case – for example, to predict a new entity type in online comments. You'll write your own training loop from scratch, and understand the basics of how training works, along with tips and tricks that can make your custom NLP projects more successful.

    Play Chapter Now

In the following tracks

Natural Language Processing

Collaborators

Mari NazaryAdrián Soto
Ines Montani Headshot

Ines Montani

spaCy core developer and co-founder of Explosion AI

Ines is a developer specialising in applications for AI, Machine Learning and Natural Language Processing technologies. She's the co-founder of Explosion AI and a core developer of the spaCy NLP library, and Prodigy, an annotation tool for radically efficient machine teaching.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA