Subscribe now. Save 50% on DataCamp and commit to learning data science and analytics.

Offer ends in  days  hrs  mins  secs
Interactive Course

Biomedical Image Analysis in Python

Learn the fundamentals of exploring, manipulating, and measuring biomedical image data.

  • 4 hours
  • 15 Videos
  • 54 Exercises
  • 4,083 Participants
  • 4,400 XP

Loved by learners at thousands of top companies:

rei-grey.svg
axa-grey.svg
ebay-grey.svg
ea-grey.svg
uber-grey.svg
paypal-grey.svg

Course Description

The field of biomedical imaging has exploded in recent years - but for the uninitiated, even loading data can be a challenge! In this introductory course, you'll learn the fundamentals of image analysis using NumPy, SciPy, and Matplotlib. You'll navigate through a whole-body CT scan, segment a cardiac MRI time series, and determine whether Alzheimer’s disease changes brain structure. Even if you have never worked with images before, you will finish the course with a solid toolkit for entering this dynamic field.

  1. 1

    Exploration

    Free

    Prepare to conquer the Nth dimension! To begin the course, you'll learn how to load, build and navigate N-dimensional images using a CT image of the human chest. You'll also leverage the useful ImageIO package and hone your NumPy and matplotlib skills.

  2. Measurement

    In this chapter, you'll get to the heart of image analysis: object measurement. Using a 4D cardiac time series, you'll determine if a patient is likely to have heart disease. Along the way, you'll learn the fundamentals of image segmentation, object labeling, and morphological measurement.

  3. Masks and Filters

    Cut image processing to the bone by transforming x-ray images. You'll learn how to exploit intensity patterns to select sub-regions of an array, and you'll use convolutional filters to detect interesting features. You'll also use SciPy's ndimage module, which contains a treasure trove of image processing tools.

  4. Image Comparison

    For the final chapter, you'll need to use your brain... and hundreds of others! Drawing data from more than 400 open-access MR images, you'll learn the basics of registration, resampling, and image comparison. Then, you'll use the extracted measurements to evaluate the effect of Alzheimer's Disease on brain structure.

  1. 1

    Exploration

    Free

    Prepare to conquer the Nth dimension! To begin the course, you'll learn how to load, build and navigate N-dimensional images using a CT image of the human chest. You'll also leverage the useful ImageIO package and hone your NumPy and matplotlib skills.

  2. Masks and Filters

    Cut image processing to the bone by transforming x-ray images. You'll learn how to exploit intensity patterns to select sub-regions of an array, and you'll use convolutional filters to detect interesting features. You'll also use SciPy's ndimage module, which contains a treasure trove of image processing tools.

  3. Measurement

    In this chapter, you'll get to the heart of image analysis: object measurement. Using a 4D cardiac time series, you'll determine if a patient is likely to have heart disease. Along the way, you'll learn the fundamentals of image segmentation, object labeling, and morphological measurement.

  4. Image Comparison

    For the final chapter, you'll need to use your brain... and hundreds of others! Drawing data from more than 400 open-access MR images, you'll learn the basics of registration, resampling, and image comparison. Then, you'll use the extracted measurements to evaluate the effect of Alzheimer's Disease on brain structure.

What do other learners have to say?

Devon

“I've used other sites, but DataCamp's been the one that I've stuck with.”

Devon Edwards Joseph

Lloyd's Banking Group

Louis

“DataCamp is the top resource I recommend for learning data science.”

Louis Maiden

Harvard Business School

Ronbowers

“DataCamp is by far my favorite website to learn from.”

Ronald Bowers

Decision Science Analytics @ USAA

Stephen Bailey
Stephen Bailey

NIH Research Fellow

Stephen Bailey is an applied data scientist at Immuta. He is passionate about democratizing science and is an enthusiastic member of the Python community. Stephen has published a number of papers on leveraging medical imaging technology to better understand health and disease, and he is excited to introduce others to this dynamic research field!

See More
Icon Icon Icon professional info