Data Types for Data Science in Python

Consolidate and extend your knowledge of Python data types such as lists, dictionaries, and tuples, leveraging them to solve Data Science problems.
Start Course for Free
4 Hours18 Videos58 Exercises31,163 Learners
4850 XP

Create Your Free Account

GoogleLinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

Loved by learners at thousands of companies


Course Description

Have you got your basic Python programming chops down for Data Science but are yearning for more? Then this is the course for you. Herein, you'll consolidate and practice your knowledge of lists, dictionaries, tuples, sets, and date times. You'll see their relevance in working with lots of real data and how to leverage several of them in concert to solve multistep problems, including an extended case study using Chicago metropolitan area transit data. You'll also learn how to use many of the objects in the Python Collections module, which will allow you to store and manipulate your data for a variety of Data Scientific purposes. After taking this course, you'll be ready to tackle many Data Science challenges Pythonically.

  1. 1

    Fundamental data types

    Free
    This chapter will introduce you to the fundamental Python data types - lists, sets, and tuples. These data containers are critical as they provide the basis for storing and looping over ordered data. To make things interesting, you'll apply what you learn about these types to answer questions about the New York Baby Names dataset!
    Play Chapter Now
  2. 2

    Dictionaries - the root of Python

    At the root of all things Python is a dictionary. Herein, you'll learn how to use them to safely handle data that can viewed in a variety of ways to answer even more questions about the New York Baby Names dataset. You'll explore how to loop through data in a dictionary, access nested data, add new data, and come to appreciate all of the wonderful capabilities of Python dictionaries.
    Play Chapter Now
  3. 3

    Meet the collections module

    The collections module is part of Python's standard library and holds some more advanced data containers. You'll learn how to use the Counter, defaultdict, OrderedDict and namedtuple in the context of answering questions about the Chicago transit dataset.
    Play Chapter Now
  4. 4

    Handling Dates and Times

    Handling times can seem daunting at time, but here, you'll dig in and learn how to create datetime objects, print them, look to the past and to the future. Additionally, you'll learn about some third party modules that can make all of this easier. You'll continue to use the Chicago Transit dataset to answer questions about transit times.
    Play Chapter Now
  5. 5

    Answering Data Science Questions

    Time for a case study to reinforce all of your learning so far! You'll use all the containers and data types you've learned about to answer several real world questions about a dataset containing information about crime in Chicago. Have fun!
    Play Chapter Now
In the following tracks
Python Programmer
Collaborators
Hugo Bowne-AndersonYashas Roy
Prerequisites
Intermediate Python
Jason Myers Headshot

Jason Myers

Co-Author of Essential SQLAlchemy and Software Engineer
Jason Myers is a software engineer and author. His area of expertise is in developing data analytics platforms. He has also written the Essential SQLAlchemy book, co-authored with Rick Copeland, that introduces you to working with relational databases in Python.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA