Develop your intuition for when to reduce dimensionality in your data, and master the fundamentals of how to do so in R.
By pressing Continue you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.
Real-world datasets often include values for dozens, hundreds, or even thousands of variables. Our minds cannot efficiently process such high-dimensional datasets to come up with useful, actionable insights. How do you deal with these multi-dimensional swarms of data points? How do you uncover and visualize hidden patterns in the data? In this course, you'll learn how to answer these questions by mastering three fundamental dimensionality reduction techniques - Principal component analysis (PCA), non-negative matrix factorisation (NNMF), and exploratory factor analysis (EFA).
As a data scientist, you'll frequently have to deal with messy and high-dimensional datasets. In this chapter, you'll learn how to use Principal Component Analysis (PCA) to effectively reduce the dimensionality of such datasets so that it becomes easier to extract actionable insights from them.
Become familiar with exploratory factor analysis (EFA), another dimensionality reduction technique that is a natural extension to PCA.
Here, you'll build on your knowledge of PCA by tackling more advanced applications, such as dealing with missing data. You'll also become familiar with another essential dimensionality reduction technique called Non-negative matrix factorization (NNMF) and how to use it in R.
Round out your mastery of dimensionality reduction in R by extending your knowledge of EFA to cover more advanced applications.
As a data scientist, you'll frequently have to deal with messy and high-dimensional datasets. In this chapter, you'll learn how to use Principal Component Analysis (PCA) to effectively reduce the dimensionality of such datasets so that it becomes easier to extract actionable insights from them.
Here, you'll build on your knowledge of PCA by tackling more advanced applications, such as dealing with missing data. You'll also become familiar with another essential dimensionality reduction technique called Non-negative matrix factorization (NNMF) and how to use it in R.
Become familiar with exploratory factor analysis (EFA), another dimensionality reduction technique that is a natural extension to PCA.
Round out your mastery of dimensionality reduction in R by extending your knowledge of EFA to cover more advanced applications.
“I've used other sites, but DataCamp's been the one that I've stuck with.”
Devon Edwards Joseph
Lloyd's Banking Group
“DataCamp is the top resource I recommend for learning data science.”
Louis Maiden
Harvard Business School
“DataCamp is by far my favorite website to learn from.”
Ronald Bowers
Decision Science Analytics @ USAA