Feature Engineering for Machine Learning in Python

Create new features to improve the performance of your Machine Learning models.
Start Course for Free
4 Hours16 Videos53 Exercises12,447 Learners
4350 XP

Create Your Free Account

GoogleLinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

Loved by learners at thousands of companies


Course Description

Every day you read about the amazing breakthroughs in how the newest applications of machine learning are changing the world. Often this reporting glosses over the fact that a huge amount of data munging and feature engineering must be done before any of these fancy models can be used. In this course, you will learn how to do just that. You will work with Stack Overflow Developers survey, and historic US presidential inauguration addresses, to understand how best to preprocess and engineer features from categorical, continuous, and unstructured data. This course will give you hands-on experience on how to prepare any data for your own machine learning models.

  1. 1

    Creating Features

    Free
    In this chapter, you will explore what feature engineering is and how to get started with applying it to real-world data. You will load, explore and visualize a survey response dataset, and in doing so you will learn about its underlying data types and why they have an influence on how you should engineer your features. Using the pandas package you will create new features from both categorical and continuous columns.
    Play Chapter Now
  2. 2

    Dealing with Messy Data

    This chapter introduces you to the reality of messy and incomplete data. You will learn how to find where your data has missing values and explore multiple approaches on how to deal with them. You will also use string manipulation techniques to deal with unwanted characters in your dataset.
    Play Chapter Now
  3. 3

    Conforming to Statistical Assumptions

    In this chapter, you will focus on analyzing the underlying distribution of your data and whether it will impact your machine learning pipeline. You will learn how to deal with skewed data and situations where outliers may be negatively impacting your analysis.
    Play Chapter Now
  4. 4

    Dealing with Text Data

    Finally, in this chapter, you will work with unstructured text data, understanding ways in which you can engineer columnar features out of a text corpus. You will compare how different approaches may impact how much context is being extracted from a text, and how to balance the need for context, without too many features being created.
    Play Chapter Now
In the following tracks
Machine Learning Scientist
Collaborators
Sumedh PanchadharHillary Green-Lerman
Robert O'Callaghan Headshot

Robert O'Callaghan

Director of Data Science, Ordergroove
Rob enables retailers and brands to make themselves indispensable to their customers’ lives by anticipating purchasing needs. Throughout his career, Rob has focused on the analysis, visualization, and modeling of data to produce actionable business improvements for some of the world’s largest organizations. He has successfully designed and implemented multi-million dollar machine learning solutions within several Fortune 500 companies, focusing in particular on bleeding edge unsupervised and supervised learning techniques. He has presented his work, in the U.S. and abroad, to audiences of hundreds at financial services and AI-focused conferences.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA