Interactive Course

Intro to Statistics with R: Correlation and Linear Regression

  • 4 hours
  • 10 Videos
  • 34 Exercises
  • 28,133 Participants
  • 2,350 XP

Loved by learners at thousands of top companies:

t-mobile-grey.svg
ebay-grey.svg
deloitte-grey.svg
3m-grey.svg
mercedes-grey.svg
credit-suisse-grey.svg

Course Description

If you have ever taken a math or statistics class, you’ve probably heard the old adage "Correlation does not imply causation". The first part of this course explores this further, and will offer a broad overview on correlational analysis. In the second part you will leave descriptive statistics behind, and dive into regression, prediction and inferential statistics.

  1. 1

    An introduction to Correlation Coefficients

    In the first chapter you will be given a broad overview on the concepts behind correlation as well as some examples. Furthermore, you will walk through the mathematical calculation of the correlation coefficient r, that is the Pearson product-moment correlation coefficient. Finally, there will be a part on the assumptions underlying a typical correlational analysis.

  2. 3

    Linear Regression Models continued

    In chapter three you will do the calculation of the regression coefficients yourself in R. Next, there will be a detailed study of the assumptions underlying a linear regression analysis. The end is reserved for Anscombe’s quartet, a famous statistical example that shows you the importance of graphing data before analyzing it.

  1. 1

    An introduction to Correlation Coefficients

    In the first chapter you will be given a broad overview on the concepts behind correlation as well as some examples. Furthermore, you will walk through the mathematical calculation of the correlation coefficient r, that is the Pearson product-moment correlation coefficient. Finally, there will be a part on the assumptions underlying a typical correlational analysis.

  2. 2

    An introduction to Linear Regression

    In this first chapter on linear regression, professor Conway will give you an overview on regression; What does it do? What is it used for? You will see how to build and execute a regression model in R, and what the effect is of adding additional regressors.

  3. 3

    Linear Regression Models continued

    In chapter three you will do the calculation of the regression coefficients yourself in R. Next, there will be a detailed study of the assumptions underlying a linear regression analysis. The end is reserved for Anscombe’s quartet, a famous statistical example that shows you the importance of graphing data before analyzing it.

What do other learners have to say?

Devon

“I've used other sites, but DataCamp's been the one that I've stuck with.”

Devon Edwards Joseph

Lloyd's Banking Group

Louis

“DataCamp is the top resource I recommend for learning data science.”

Louis Maiden

Harvard Business School

Ronbowers

“DataCamp is by far my favorite website to learn from.”

Ronald Bowers

Decision Science Analytics @ USAA

Andrew Conway
Andrew Conway

Instructor

Andrew Conway is a Psychology Professor in the Division of Behavioral and Organizational Sciences at Claremont Graduate University in Claremont, California. He has been teaching introduction to statistics for undergraduate students and advanced statistics for graduate students for 20 years, at a variety of institutions, including the University of South Carolina, the University of Illinois in Chicago, and Princeton University.

Icon Icon Icon professional info