Supervised Learning in R: Regression

In this course you will learn how to predict future events using linear regression, generalized additive models, random forests, and xgboost.
Start Course for Free
4 Hours19 Videos65 Exercises27,101 Learners
5300 XP

Create Your Free Account

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA. You confirm you are at least 16 years old (13 if you are an authorized Classrooms user).

Loved by learners at thousands of companies

Course Description

From a machine learning perspective, regression is the task of predicting numerical outcomes from various inputs. In this course, you'll learn about different regression models, how to train these models in R, how to evaluate the models you train and use them to make predictions.

  1. 1

    What is Regression?

    In this chapter we introduce the concept of regression from a machine learning point of view. We will present the fundamental regression method: linear regression. We will show how to fit a linear regression model and to make predictions from the model.
    Play Chapter Now
  2. 2

    Training and Evaluating Regression Models

    Now that we have learned how to fit basic linear regression models, we will learn how to evaluate how well our models perform. We will review evaluating a model graphically, and look at two basic metrics for regression models. We will also learn how to train a model that will perform well in the wild, not just on training data. Although we will demonstrate these techniques using linear regression, all these concepts apply to models fit with any regression algorithm.
    Play Chapter Now
  3. 3

    Issues to Consider

    Before moving on to more sophisticated regression techniques, we will look at some other modeling issues: modeling with categorical inputs, interactions between variables, and when you might consider transforming inputs and outputs before modeling. While more sophisticated regression techniques manage some of these issues automatically, it's important to be aware of them, in order to understand which methods best handle various issues -- and which issues you must still manage yourself.
    Play Chapter Now
  4. 4

    Dealing with Non-Linear Responses

    Now that we have mastered linear models, we will begin to look at techniques for modeling situations that don't meet the assumptions of linearity. This includes predicting probabilities and frequencies (values bounded between 0 and 1); predicting counts (nonnegative integer values, and associated rates); and responses that have a non-linear but additive relationship to the inputs. These algorithms are variations on the standard linear model.
    Play Chapter Now
  5. 5

    Tree-Based Methods

    In this chapter we will look at modeling algorithms that do not assume linearity or additivity, and that can learn limited types of interactions among input variables. These algorithms are *tree-based* methods that work by combining ensembles of *decision trees* that are learned from the training data.
    Play Chapter Now
In the following tracks
Data ScientistMachine Learning FundamentalsMachine Learning Scientist
Sumedh PanchadharRichie Cotton
John Mount Headshot

John Mount

Co-founder, Principal Consultant at Win-Vector, LLC
John is a co-founder and principal consultant at Win-Vector LLC, a San Francisco data science consultancy. He is the author of several R packages, including the data treatment package vtreat. John is co-author of Practical Data Science with R and blogs at the Win-Vector Blog about data science and R programming. His interests include data science, statistics, R programming, and theoretical computer science.
See More
Nina Zumel Headshot

Nina Zumel

Co-founder, Principal Consultant at Win-Vector, LLC
Nina is a co-founder and principal consultant at Win-Vector LLC, a San Francisco data science consultancy. She is co-author of the popular text Practical Data Science with R and occasionally blogs at the Win-Vector Blog on data science and R. Her technical interests include data science, statistics, statistical learning, and data visualization.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA