Pular para o conteúdo principal
Página inicialMachine LearningMachine Learning with PySpark

Machine Learning with PySpark

Learn how to make predictions from data with Apache Spark, using decision trees, logistic regression, linear regression, ensembles, and pipelines.

Comece O Curso Gratuitamente
4 Horas16 Videos56 Exercicios
22.215 AprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
GroupTreinar 2 ou mais pessoas?Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

Learn to Use Apache Spark for Machine Learning

Spark is a powerful, general purpose tool for working with Big Data. Spark transparently handles the distribution of compute tasks across a cluster. This means that operations are fast, but it also allows you to focus on the analysis rather than worry about technical details. In this course you'll learn how to get data into Spark and then delve into the three fundamental Spark Machine Learning algorithms: Linear Regression, Logistic Regression/Classifiers, and creating pipelines.

Build and Test Decision Trees

Building your own decision trees is a great way to start exploring machine learning models. You’ll use an algorithm called ‘Recursive Partitioning’ to divide data into two classes and find a predictor within your data that results in the most informative split of the two classes, and repeat this action with further nodes. You can then use your decision tree to make predictions with new data.

Master Logistic and Linear Regression in PySpark

Logistic and linear regression are essential machine learning techniques that are supported by PySpark. You’ll learn to build and evaluate logistic regression models, before moving on to creating linear regression models to help you refine your predictors to only the most relevant options.

By the end of the course, you’ll feel confident in applying your new-found machine learning knowledge, thanks to hands-on tasks and practice data sets found throughout the course.
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.

Nas seguintes faixas

Big Data com PySpark

Ir para a trilha

Cientista de aprendizado de máquina com Python

Ir para a trilha
  1. 1

    Introduction

    Grátis

    Spark is a framework for working with Big Data. In this chapter you'll cover some background about Spark and Machine Learning. You'll then find out how to connect to Spark using Python and load CSV data.

    Reproduzir Capítulo Agora
    Machine Learning & Spark
    50 xp
    Characteristics of Spark
    50 xp
    Components in a Spark Cluster
    50 xp
    Connecting to Spark
    50 xp
    Location of Spark master
    50 xp
    Creating a SparkSession
    100 xp
    Loading Data
    50 xp
    Loading flights data
    100 xp
    Loading SMS spam data
    100 xp
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

Nas seguintes faixas

Big Data com PySpark

Ir para a trilha

Cientista de aprendizado de máquina com Python

Ir para a trilha

Conjuntos De Dados

FlightsSMS

Colaboradores

Collaborator's avatar
Hadrien Lacroix
Collaborator's avatar
Mona Khalil
Andrew Collier HeadshotAndrew Collier

Data Scientist @ Exegetic Analytics

Veja Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Machine Learning with PySpark hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.