Interactive Course

Model Validation in Python

Learn the basics of model validation, validation techniques, and begin creating validated and high performing models.

  • 4 hours
  • 15 Videos
  • 47 Exercises
  • 1,234 Participants
  • 3,700 XP

Loved by learners at thousands of top companies:

deloitte-grey.svg
ea-grey.svg
mercedes-grey.svg
ikea-grey.svg
axa-grey.svg
roche-grey.svg

Course Description

Machine learning models are easier to implement now more than ever before. Without proper validation, the results of running new data through a model might not be as accurate as expected. Model validation allows analysts to confidently answer the question, how good is your model? We will answer this question for classification models using the complete set of tic-tac-toe endgame scenarios, and for regression models using fivethirtyeight’s ultimate Halloween candy power ranking dataset. In this course, we will cover the basics of model validation, discuss various validation techniques, and begin to develop tools for creating validated and high performing models.

  1. 1

    Basic Modeling in scikit-learn

    Free

    Before we can validate models, we need an understanding of how to create and work with them. This chapter provides an introduction to running regression and classification models in scikit-learn. We will use this model building foundation throughout the remaining chapters.

  2. Cross Validation

    Holdout sets are a great start to model validation. However, using a single train and test set if often not enough. Cross-validation is considered the gold standard when it comes to validating model performance and is almost always used when tuning model hyper-parameters. This chapter focuses on performing cross-validation to validate model performance.

  3. Validation Basics

    This chapter focuses on the basics of model validation. From splitting data into training, validation, and testing datasets, to creating an understanding of the bias-variance tradeoff, we build the foundation for the techniques of K-Fold and Leave-One-Out validation practiced in chapter three.

  4. Selecting the best model with Hyperparameter tuning.

    The first three chapters focused on model validation techniques. In chapter 4 we apply these techniques, specifically cross-validation, while learning about hyperparameter tuning. After all, model validation makes tuning possible and helps us select the overall best model.

  1. 1

    Basic Modeling in scikit-learn

    Free

    Before we can validate models, we need an understanding of how to create and work with them. This chapter provides an introduction to running regression and classification models in scikit-learn. We will use this model building foundation throughout the remaining chapters.

  2. Validation Basics

    This chapter focuses on the basics of model validation. From splitting data into training, validation, and testing datasets, to creating an understanding of the bias-variance tradeoff, we build the foundation for the techniques of K-Fold and Leave-One-Out validation practiced in chapter three.

  3. Cross Validation

    Holdout sets are a great start to model validation. However, using a single train and test set if often not enough. Cross-validation is considered the gold standard when it comes to validating model performance and is almost always used when tuning model hyper-parameters. This chapter focuses on performing cross-validation to validate model performance.

  4. Selecting the best model with Hyperparameter tuning.

    The first three chapters focused on model validation techniques. In chapter 4 we apply these techniques, specifically cross-validation, while learning about hyperparameter tuning. After all, model validation makes tuning possible and helps us select the overall best model.

What do other learners have to say?

Devon

“I've used other sites, but DataCamp's been the one that I've stuck with.”

Devon Edwards Joseph

Lloyd's Banking Group

Louis

“DataCamp is the top resource I recommend for learning data science.”

Louis Maiden

Harvard Business School

Ronbowers

“DataCamp is by far my favorite website to learn from.”

Ronald Bowers

Decision Science Analytics @ USAA

Kasey Jones
Kasey Jones

Data Scientist

Kasey Jones is a research data scientist at RTI International. His work focuses primarily on agent-based model simulations and natural language processing analysis. He also enjoys creating unique visualizations using D3, and building R-Shiny and python Dash dashboards. Outside of RTI he spends his time working through leet code problems, playing chess, and traveling all over the world.

See More
Collaborators
  • Chester Ismay

    Chester Ismay

  • Becca Robins

    Becca Robins

Icon Icon Icon professional info