skill track

Deep Learning for NLP in Python

Further your Natural Language Processing (NLP) skills and master the machine learning techniques needed to extract insights from data. In this track, you'll learn how to create Recurrent Neural Networks (RNN), build models to translate language, and autocomplete sentences like Gmail using neural translation and seq2seq models. Through interactive exercises, you'll use the scikit-learn, TensorFlow, Keras, and NLTK libraries. Then, you’ll apply your skills to real-world data, including scripts from The Big Bang Theory, English and French vocabulary, and the works of Shakespeare. Start this track and gain the machine learning skills you need to enhance your NLP skills in Python.

PythonClock12 hoursLearn3 Courses

Create Your Free Account

By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

Loved by learners at thousands of companies

Recurrent Neural Networks for Language Modeling in Python
Use RNNs to classify text sentiment, generate sentences, and translate text between languages.
4 hours
David Cecchini Headshot

David Cecchini

Data Scientist

Track statement of accomplishment