Hands-on learning experience
Companies using DataCamp achieve course completion rates 6X higher than traditional online course providers
Learn MoreLead Data Scientist at Ford Motor Company
The automotive industry is one of the oldest industries of the modern world, but it’s much more than just making cars. Because mobility is a part of our everyday lives, companies in this industry have a huge reach and massive impact on society. Every single business function from manufacturing to mobile application development exists within the automotive industry.
In this webinar, Lead Data Scientist at Ford Michael Crabtree will review a wide variety of data science use cases that will inspire you to challenge ideas in an old industry with new inventive ways to shape the future of manufacturing and mobility. You will learn how automotive companies manage to scale data science applications on everything from small-sized data to hundred-billion row intelligent connected vehicle systems. You’ll also learn more about applying data science use cases in a human-centric fashion to have a lasting impact on society at large.
This webinar is for data scientists of all levels looking to change their viewpoint on old industries and create the future by leveraging machine learning and AI in creative new ways.
Data science is becoming an essential part in the automotive industry, serving as a key driver for innovation and efficiency. From vehicle design to manufacturing and sales, data analytics provides transformative solutions across the entire lifecycle of a car. The inclusion of machine learning and optimization algorithms allows for significant developments in autonomous vehicles and mobility solutions, which are setting the direction for the industry's future. Moreover, data science aids in improving vehicle reliability, optimizing supply chains, and ensuring sustainability through fuel efficiency improvements. The extensive nature of the automotive industry, with its large databases and intricate data types, offers a unique opportunity for data scientists to make a substantial impact on global mobility and business operations. However, challenges such as data governance, aligning business value with data insights, and distributing data science knowledge within organizations are important factors to address for maximizing the potential of data science in this sector.
Autonomous vehicles are among the mo ...
Read More
Data science plays an important role in vehicle design and development, offering insights that enhance product reliability and customer satisfaction. By analyzing new model configurations and simulating component performance, data scientists can predict potential issues before they arise. This proactive approach not only improves the quality of vehicles but also reduces production costs. Michael Crabtree notes the importance of optimization algorithms in decision-making, pointing out that "optimization algorithms will directly affect sales and the bottom line of the company." The collaboration between data scientists and engineers in testing material durability and performance exemplifies how data science supplements traditional engineering practices, ultimately leading to safer and more efficient vehicles.
The automotive industry's supply chain is a complex network that benefits significantly from data science applications. By using risk analysis and forecasting techniques, data scientists can identify potential disruptions and recommend strategies to mitigate them. The combination of econometrics with machine learning models allows for a comprehensive understanding of supplier performance and economic conditions, ensuring a stable supply of quality parts. Michael Crabtree emphasizes the potential savings from such analyses, stating that "your work could end up impacting the competitive strategy of a large enterprise at a global scale." This strategic use of data science not only protects the production process but also enhances the company's competitive edge in the market.
Implementing data science in the automotive industry is not without its challenges. The highly regulated nature of the industry necessitates careful handling of legal and ethical considerations, particularly concerning data governance and the handling of personally identifiable information (PII). Furthermore, aligning data insights with business objectives is important for demonstrating the value of data-driven approaches. As Crabtree suggests, "you have to take the time to talk to the business and the subject matter experts to understand what exactly is valuable." Additionally, distributing data science knowledge within organizations enables collaboration between data scientists and seasoned industry experts, fostering a culture of innovation and continuous improvement. Overcoming these challenges requires a strategic approach that balances technical capabilities with business acumen and ethical responsibility.
Companies using DataCamp achieve course completion rates 6X higher than traditional online course providers
Learn More