Interactive Course

Working with Dates and Times in Python

Learn how to work with dates and times in Python.

  • 4 hours
  • 14 Videos
  • 48 Exercises
  • 1,348 Participants
  • 4,100 XP

Loved by learners at thousands of top companies:

ea-grey.svg
ebay-grey.svg
dell-grey.svg
t-mobile-grey.svg
roche-grey.svg
3m-grey.svg

Course Description

You'll probably never have a time machine, but how about a machine for analyzing time? As soon as time enters any analysis, things can get weird. It's easy to get tripped up on day and month boundaries, time zones, daylight saving time, and all sorts of other things that can confuse the unprepared. If you're going to do any kind of analysis involving time, you’ll want to use Python to sort it out. Working with data sets on hurricanes and bike trips, we’ll cover counting events, figuring out how much time has elapsed between events and plotting data over time. You'll work in both standard Python and in Pandas, and we'll touch on the dateutil library, the only timezone library endorsed by the official Python documentation. After this course, you'll confidently handle date and time data in any format like a champion.

  1. 1

    Dates and Calendars

    Free

    Hurricanes (also known as cyclones or typhoons) hit the U.S. state of Florida several times per year. To start off this course, you'll learn how to work with date objects in Python, starting with the dates of every hurricane to hit Florida since 1950. You'll learn how Python handles dates, common date operations, and the right way to format dates to avoid confusion.

  2. Time Zones and Daylight Saving

    In this chapter, you'll learn to confidently tackle the time-related topic that causes people the most trouble: time zones and daylight saving. Continuing with our bike data, you'll learn how to compare clocks around the world, how to gracefully handle "spring forward" and "fall back," and how to get up-to-date timezone data from the dateutil library.

  3. Combining Dates and Times

    Bike sharing programs have swept through cities around the world -- and luckily for us, every trip gets recorded! Working with all of the comings and goings of one bike in Washington, D.C., you'll practice working with dates and times together. You'll parse dates and times from text, analyze peak trip times, calculate ride durations, and more.

  4. Easy and Powerful: Dates and Times in Pandas

    To conclude this course, you'll apply everything you've learned about working with dates and times in standard Python to working with dates and times in Pandas. With additional information about each bike ride, such as what station it started and stopped at and whether or not the rider had a yearly membership, you'll be able to dig much more deeply into the bike trip data. In this chapter, you'll cover powerful Pandas operations, such as grouping and plotting results by time.

  1. 1

    Dates and Calendars

    Free

    Hurricanes (also known as cyclones or typhoons) hit the U.S. state of Florida several times per year. To start off this course, you'll learn how to work with date objects in Python, starting with the dates of every hurricane to hit Florida since 1950. You'll learn how Python handles dates, common date operations, and the right way to format dates to avoid confusion.

  2. Combining Dates and Times

    Bike sharing programs have swept through cities around the world -- and luckily for us, every trip gets recorded! Working with all of the comings and goings of one bike in Washington, D.C., you'll practice working with dates and times together. You'll parse dates and times from text, analyze peak trip times, calculate ride durations, and more.

  3. Time Zones and Daylight Saving

    In this chapter, you'll learn to confidently tackle the time-related topic that causes people the most trouble: time zones and daylight saving. Continuing with our bike data, you'll learn how to compare clocks around the world, how to gracefully handle "spring forward" and "fall back," and how to get up-to-date timezone data from the dateutil library.

  4. Easy and Powerful: Dates and Times in Pandas

    To conclude this course, you'll apply everything you've learned about working with dates and times in standard Python to working with dates and times in Pandas. With additional information about each bike ride, such as what station it started and stopped at and whether or not the rider had a yearly membership, you'll be able to dig much more deeply into the bike trip data. In this chapter, you'll cover powerful Pandas operations, such as grouping and plotting results by time.

What do other learners have to say?

Devon

“I've used other sites, but DataCamp's been the one that I've stuck with.”

Devon Edwards Joseph

Lloyd's Banking Group

Louis

“DataCamp is the top resource I recommend for learning data science.”

Louis Maiden

Harvard Business School

Ronbowers

“DataCamp is by far my favorite website to learn from.”

Ronald Bowers

Decision Science Analytics @ USAA

Max Shron
Max Shron

Data Scientist and Author

Max Shron is a Data Scientist and author. Prior to his role as Director of Data at Warby Parker, he founded the consultancy Polynumeral, whose clients ranged from NGOs to the Fortune 500. He was the first Data Scientist at OkCupid, where he helped create many popular blog posts. He wrote Thinking with Data (O'Reilly 2015), a book learning from design and rhetoric to help data scientists solve the right problems.

See More
Collaborators
  • Chester Ismay

    Chester Ismay

  • Sumedh Panchadhar

    Sumedh Panchadhar

Prerequisites
Icon Icon Icon professional info