Learn to train and assess models performing common machine learning tasks such as classification and clustering.
By continuing you accept the Terms of Use and Privacy Policy, that your data will be stored outside of the EU, and that you are 16 years or older.
This online machine learning course is perfect for those who have a solid basis in R and statistics, but are complete beginners with machine learning. After a broad overview of the discipline's most common techniques and applications, you'll gain more insight into the assessment and training of different machine learning models. The rest of the course is dedicated to a first reconnaissance with three of the most basic machine learning tasks: classification, regression and clustering.
Learn to train and assess models performing common machine learning tasks such as classification and clustering.
In this first chapter, you get your first intro to machine learning. After learning the true fundamentals of machine learning, you'll experiment with the techniques that are explained in more detail in future chapters.
You'll learn how to assess the performance of both supervised and unsupervised learning algorithms. Next, you'll learn why and how you should split your data in a training set and a test set. Finally, the concepts of bias and variance are explained.
You'll gradually take your first steps to correctly perform classification, one of the most important tasks in machine learning today. By the end of this chapter, you'll be able to learn and build a decision tree and to classify unseen observations with k-Nearest Neighbors.
Although a traditional subject in classical statistics, you can also consider regression from a machine learning point of view. You'll learn more about the predictive capabilities and performance of regression algorithms. At the end of this chapter you'll be acquainted with simple linear regression, multi-linear regression and k-Nearest Neighbors regression.
As an unsupervised learning technique, clustering requires a different approach than the ones you have seen in the previous chapters. How can you cluster? When is a clustering any good? All these questions will be answered; you'll also learn about k-means clustering and hierarchical clustering along the way. At the end of this chapter and our machine learning video tutorials, youâ€™ll have a basic understanding of all the main principles.
Join over 3,320,000 others learning to leverage the power of data with DataCamp!
Start Course For Free