Introduction to Network Analysis in Python

This course will equip you with the skills to analyze, visualize, and make sense of networks using the NetworkX library.
Start Course for Free
Clock4 HoursPlay14 VideosCode50 ExercisesGroup58,756 Learners
Database4100 XP

Create Your Free Account

Google LinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

Loved by learners at thousands of companies


Course Description

From online social networks such as Facebook and Twitter to transportation networks such as bike sharing systems, networks are everywhere—and knowing how to analyze them will open up a new world of possibilities for you as a data scientist. This course will equip you with the skills to analyze, visualize, and make sense of networks. You'll apply the concepts you learn to real-world network data using the powerful NetworkX library. With the knowledge gained in this course, you'll develop your network thinking skills and be able to look at your data with a fresh perspective.

  1. 1

    Introduction to networks

    Free
    In this chapter, you'll be introduced to fundamental concepts in network analytics while exploring a real-world Twitter network dataset. You'll also learn about NetworkX, a library that allows you to manipulate, analyze, and model graph data. You'll learn about the different types of graphs and how to rationally visualize them.
    Play Chapter Now
  2. 2

    Important nodes

    You'll learn about ways to identify nodes that are important in a network. In doing so, you'll be introduced to more advanced concepts in network analysis as well as the basics of path-finding algorithms. The chapter concludes with a deep dive into the Twitter network dataset which will reinforce the concepts you've learned, such as degree centrality and betweenness centrality.
    Play Chapter Now
  3. 3

    Structures

    This chapter is all about finding interesting structures within network data. You'll learn about essential concepts such as cliques, communities, and subgraphs, which will leverage all of the skills you acquired in Chapter 2. By the end of this chapter, you'll be ready to apply the concepts you've learned to a real-world case study.
    Play Chapter Now
  4. 4

    Bringing it all together

    In this final chapter of the course, you'll consolidate everything you've learned through an in-depth case study of GitHub collaborator network data. This is a great example of real-world social network data, and your newly acquired skills will be fully tested. By the end of this chapter, you'll have developed your very own recommendation system to connect GitHub users who should collaborate together.
    Play Chapter Now
In the following tracks
Data Science for Everyone
Collaborators
Hugo Bowne-AndersonYashas Roy
Eric Ma Headshot

Eric Ma

Data Carpentry instructor and author of nxviz package
Eric uses code to solve big biological data problems at MIT. His tools of choice are: deep learning, network analysis, non-parametric and Bayesian statistics. He has domain expertise in the life sciences: molecular biology, microbiology, genetics and genomics, and a bit of ecology. He has given workshops on Network Analysis at PyCon, PyData, ODSC and beyond!
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA

Join over 6 million learners and start Introduction to Network Analysis in Python today!

Create Your Free Account

Google LinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.