Learn the fundamentals of neural networks and how to build deep learning models using TensorFlow.
By pressing Continue you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.
Not long ago, cutting-edge computer vision algorithms couldn’t differentiate between images of cats and dogs. Today, a skilled data scientist equipped with nothing more than a laptop can classify tens of thousands of objects with greater accuracy than the human eye. In this course, you will use TensorFlow 2.0 to develop, train, and make predictions with the models that have powered major advances in recommendation systems, image classification, and FinTech. You will learn both high-level APIs, which will enable you to design and train deep learning models in 15 lines of code, and low-level APIs, which will allow you to move beyond off-the-shelf routines. You will also learn to accurately predict housing prices, credit card borrower defaults, and images of sign language gestures.
Before you can build advanced models in TensorFlow 2.0, you will first need to understand the basics. In this chapter, you’ll learn how to define constants and variables, perform tensor addition and multiplication, and compute derivatives. Knowledge of linear algebra will be helpful, but not necessary.
The previous chapters taught you how to build models in TensorFlow 2.0. In this chapter, you will apply those same tools to build, train, and make predictions with neural networks. You will learn how to define dense layers, apply activation functions, select an optimizer, and apply regularization to reduce overfitting. You will take advantage of TensorFlow's flexibility by using both low-level linear algebra and high-level Keras API operations to define and train models.
In this chapter, you will learn how to build, solve, and make predictions with models in TensorFlow 2.0. You will focus on a simple class of models – the linear regression model – and will try to predict housing prices. By the end of the chapter, you will know how to load and manipulate data, construct loss functions, perform minimization, make predictions, and reduce resource use with batch training.
In the final chapter, you'll use high-level APIs in TensorFlow 2.0 to train a sign language letter classifier. You will use both the sequential and functional Keras APIs to train, validate, make predictions with, and evaluate models. You will also learn how to use the Estimators API to streamline the model definition and training process, and to avoid errors.
Before you can build advanced models in TensorFlow 2.0, you will first need to understand the basics. In this chapter, you’ll learn how to define constants and variables, perform tensor addition and multiplication, and compute derivatives. Knowledge of linear algebra will be helpful, but not necessary.
In this chapter, you will learn how to build, solve, and make predictions with models in TensorFlow 2.0. You will focus on a simple class of models – the linear regression model – and will try to predict housing prices. By the end of the chapter, you will know how to load and manipulate data, construct loss functions, perform minimization, make predictions, and reduce resource use with batch training.
The previous chapters taught you how to build models in TensorFlow 2.0. In this chapter, you will apply those same tools to build, train, and make predictions with neural networks. You will learn how to define dense layers, apply activation functions, select an optimizer, and apply regularization to reduce overfitting. You will take advantage of TensorFlow's flexibility by using both low-level linear algebra and high-level Keras API operations to define and train models.
In the final chapter, you'll use high-level APIs in TensorFlow 2.0 to train a sign language letter classifier. You will use both the sequential and functional Keras APIs to train, validate, make predictions with, and evaluate models. You will also learn how to use the Estimators API to streamline the model definition and training process, and to avoid errors.
“I've used other sites, but DataCamp's been the one that I've stuck with.”
Devon Edwards Joseph
Lloyd's Banking Group
“DataCamp is the top resource I recommend for learning data science.”
Louis Maiden
Harvard Business School
“DataCamp is by far my favorite website to learn from.”
Ronald Bowers
Decision Science Analytics @ USAA